Enhanced inhibition of heavy metal leaching in incineration bottom ash through accelerated carbonation with ammonium carbonate

The increasing generation of incineration bottom residues poses environmental risks due to heavy metal leaching, while carbonation is one of the effective methods to immobilize heavy metals. This study introduces a novel approach to mitigate heavy metal leaching from incineration bottom ash (IBA) by accelerated carbonation with ammonium carbonate solution. The effect of ammonium carbonate concentration on carbonation efficiency and inhibition of heavy metal leaching was systematically investigated. X-ray fluorescence was used to analyze the composition of IBA, and thermogravimetric analysis (TGA) and inductively coupled plasma optical emission spectroscopy/mass spectrometry were used to determine carbonation capacity and heavy metal leaching, respectively. Results showed that maximum carbonation capacity was achieved at 8 wt% ammonium carbonate concentration at a solid/liquid ratio of 1:5 for 1 h, but the increase in carbonation efficiency slowed down when the concentration exceeded 4 wt%. Ammonium carbonate accelerated carbonation effectively inhibited heavy metal leaching, particularly copper, with an 89% inhibition rate at 10 wt% ammonium carbonate, while diminished effects were observed with chromiun. The effect of the ammonium carbonate concentration on heavy metal inhibition became less significant above 4 wt%, revealing a nuanced relationship between carbonation and heavy metal leaching inhibition. TGA and X-ray diffraction analyses confirmed the formation of insoluble CaCO3 during carbonation, elucidating neomineralization processes that immobilize trace heavy metals. In addition, the study explored the impact of carbonation on leachate pH, emphasizing the interplay between pH reduction and heavy metal leaching inhibition.
- The National Environment Agency; 2020. Available from: https://www.nea.gov.sg/corporate-functions/resources/ publications/books-journals-and-magazines/envision-lite/ june-july-2020/semakau-landfill-20th-anniversary [Last accessed on 2024 Nov 07].
- Chen D, Zhang YY, Xu Y, et al. Municipal solid waste incineration residues recycled for typical construction materials-a review. RSC Adv. 2022;12:6279-6291. doi: 10.1039/D1RA08050D
- Bayuseno AP, Schmahl WW. Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manage. 2010;30:1509-1520. doi: 10.1016/j.wasman.2010.03.010
- Appendino P, Ferraris M, Matekovits I, Salvo M. Production of glass-ceramic bodies from the bottom ashes of municipal solid waste incinerators. J Eur Ceram Soc. 2024;24:803-810. doi: 10.1016/S0955-2219(03)00264-4
- Bertolini L, Carsana M, Cassago D, Curzio AQ, Collepardi M. MSWI ashes as mineral additions in concrete. Cem Concr Res. 2004;34:1899-1906. doi: 10.1016/j.cemconres.2004.02.001
- Clavier KA, Watts B, Liu Y, Ferraro CC, Townsend TG. Risk and performance assessment of cement made using municipal solid waste incinerator bottom ash as a cement kiln feed. Resour Conserv Recycl. 2019;146:270-279. doi: 10.1016/j.resconrec.2019.03.04
- Li XG, Lv Y, Ma BG, Chen QB, Yin XB, Jian SW. Utilization of municipal solid waste incineration bottom ash in blended cement. J Clean Prod. 2012;32:96-100. doi: 10.1016/j.jclepro.2012.03.038
- Li YM, Wu XQ, Wang LJ, Li RQ, Huang TY, Wen XQ. Comparative study on utilization of different types of municipal solid waste incineration bottom ash for clinker sintering. J Mater Cycles Waste Manag. 2020;22:1828-1843. doi: 10.1007/s10163-020-01067-6
- Maldonado-Alameda A, Giro-Paloma J, Alfocea-Roig A, Formosa J, Chimenos JM. Municipal solid waste incineration bottom ash as sole precursor in the alkali-activated binder formulation. Appl Sci. 2020;10:4129. doi: 10.3390/app10124129
- Pera J, Coutaz L, Ambroise J, Chababbet M. Use of incinerator bottom ash in concrete. Cem Concr Res. 1997;27:1-5. doi: 10.1016/S0008-8846(96)00193-7
- Rambaldi E, Esposito L, Andreola F, Barbieri L, Lancellotti I, Vassura I. The recycling of MSWI bottom ash in silicate based ceramic. Ceram Int. 2010;36:2469-2476. doi: 10.1016/j.ceramint.2010.08.005
- Tang P, Chen W, Xuan D, Zuo Y, Poon CS. Investigation of cementitious properties of different constituents in municipal solid waste incineration bottom ash as supplementary cementitious materials. J Clean Prod. 2020;258:120675. doi: 10.1016/j.jclepro.2020.120675
- Taurino R, Karamanov E, Barbieri L, Atanasova- Vladimirova S, Andreola F, Karamanov A. New fired bricks based on municipal solid waste incinerator bottom ash. Waste Manag Res. 2017;35:1055-1063. doi: 10.1177/0734242X17721343
- Vegas I, Ibañez JA, San José JT, Urzelai A. Construction demolition wastes, Waelz slag and MSWI bottom ash: A comparative technical analysis as material for road construction. Waste Manage. 2008;28:565-574. doi: 10.1016/j.wasman.2007.01.016
- Zhang Z, Wang J, Liu L, Ma J, Shen B. Preparation of additive-free glass-ceramics from MSW incineration bottom ash and coal fly ash. Construct Build Mater. 2020;254:119345. doi: 10.1016/j.conbuildmat.2020.119345
- Dabo D, Badreddine R, De Windt L, Drouadaine I. Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site. J Hazard Mater. 2009;172:904-913. doi: 10.1016/j.jhazmat.2009.07.083
- Hu H. Human health and heavy metals exposure. In: McCally M, editor. Life Support: The Environment and Human Health. Cambridge, MA, USA: MIT Press; 2002.
- Marchese F, Genon G. Full scale tests of short-term municipal solid waste incineration bottom ash weathering before landfill disposal. Am J Environ Sci. 2009;5:570-577. doi: 10.3844/ajessp.2009.570.577
- Sherameti I, Varma A. Soil Heavy Metals. Heidelberg, Germany: Springer-Verlag; 2010.
- Sivula L, Sormunen K, Rintala J. Leachate formation and characteristics from gasification and grate incineration bottom ash under landfill conditions. Waste Manage. 2012;32:780-788. doi: 10.1016/j.wasman.2011.11.012
- Takahashi F, Etoh J, Shimaoka T. Metal mobilization from municipal solid waste incineration bottom ash through metal complexation with organic and inorganic ligands. J Mater Cycles Waste Manage. 2010;12:1-9. doi: 10.1007/s10163-009-0266-0
- Sun X, Yi Y. pH evolution during water washing of incineration bottom ash and its effect on removal of heavy metals. Waste Manage. 2020;104:213-219. doi: 10.1016/j.wasman.2020.01.023
- Quek A, Xu W, Guo L, Wu D. Heavy metal removal from incineration bottom ash through washing with rainwater and seawater. Int J Waste Resour. 2016;6:1000203. doi: 10.4172/2252-5211.1000203
- Sabbas T, Polettini A, Pomi R, et al. Management of municipal solid waste residues. Waste Manage. 2023;23:61-88. doi: 10.1016/S0956-053X(02)00161-7
- Sun X, Yi Y. Acid washing of incineration bottom ash of municipal solid waste: Effects of pH on removal and leaching of heavy metals. Waste Manage. 2012;120:183-192. doi: 10.1016/j.wasman.2020.11.030
- Van Gerven T, Cooreman H, Imbrechts K, Hindrix K, Vandecasteele C. Extraction of heavy metals from municipal solid waste incinerator (MSWI) bottom ash with organic solutions. J Hazard Mater. 2007;140:376-381. doi: 10.1016/j.jhazmat.2006.10.037
- Ferraris M, Salvo M, Ventrella A, Buzzi L, Veglia M. Use of vitrified MSWI bottom ashes for concrete production. Waste Manage. 2009;29:1041-1047. doi: 10.1016/j.wasman.2008.07.014
- Toraldo E, Saponaro S, Careghini A, Mariani E. Use of stabilized bottom ash for bound layers of road pavements. J Environ Manag. 2013;121:117-123. doi: 10.1016/j.jenvman.2013.02.037
- Santos R, Mertens G, Salman M, Cizer O, Van Gerven T. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. J Environ Manag. 2013;128: 807-821. doi: 10.1016/j.jenvman.2013.06.033
- Arickx S, Van Gerven T, Vandecasteele C. Accelerated carbonation for treatment of MSWI bottom ash. J Hazard Mater. 2006;137:235-243. doi: 10.1016/j.jhazmat.2006.01.059
- Lin WY, Heng KS, Sun X, Wang JY. Accelerated carbonation of different size fractions of MSW IBA and the effect on leaching. Waste Manage. 2015;41:75-84. doi: 10.1016/j.wasman.2015.04.003
- Baciocchi R, Costa G, Lategano E, et al. Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Manage. 2010;30:1310-1317. doi: 10.1016/j.wasman.2009.11.027
- Brück F, Schnabel K, Mansfeldt T, Weigand H. Accelerated carbonation of waste incinerator bottom ash in a rotating drum batch reactor. J Environ Chem Eng. 2008;6:5259-5268. doi: 10.1016/j.jece.2018.08.024
- Chang EE, Pan SY, Yang L, Chen YH, Kim H, Chiang PC. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics. Waste Manage. 2015;43:283-292. doi: 10.1016/J.WASMAN.2015.05.001
- Nam SY, Seo J, Thriveni T, Ahn JW. Accelerated carbonation of municipal solid waste incineration bottom ash for CO2 sequestration. Geosystem Eng. 2012;15:305-311. doi: 10.1080/12269328.2012.732319
- Um N, Ahn JW. Effects of two different accelerated carbonation processes on MSWI bottom ash. Process Saf Environ Prot. 2017;111:560-568. doi: 10.1016/j.psep.2017.08.028
- Yao Z, Prabhakar AK, Mohan BC, Wang CW. An innovative accelerated carbonation process for treatment of incineration bottom ash and biogas upgrading. Waste Manage. 2022;144:203-209. doi: 10.1016/j.wasman.2022.03.033
- Liu JZ, Wang SJ, Zhao B, Tong HL, Chen CH. Absorption of carbon dioxide in aqueous ammonia Energy Procedia. 2009;933-940. doi: 10.1016/j.egypro.2009.01.124
- Shakerian F, Kim KH, Szulejko JE, Park JW. A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Appl Energy. 2015;148:10-22. doi: 10.1016/j.apenergy.2015.03.026
- Srivastav P, Schenkel M, Mir GUR, Berg T, Staats M. Carbon capture, utilisation and storage (CCUS): Decarbonisation pathway for Singapore’s energy and chemical sectors. A joint study by NCCS (Singapore) and EDB (Singapore); 2021.
- Han S, Ju T, Meng Y, et al. Evaluation of various microwave-assisted acid digestion procedures for the determination of major and heavy metal elements in municipal solid waste incineration fly ash. J Clean Prod. 2021;321:128922. doi: 10.1016/j.jclepro.2021.128922
- Um N, Nam SY, Ahn JW. Effect of accelerated carbonation on the leaching behavior of Cr in municipal solid waste incinerator bottom ash and the carbonation. Kinetics Mater Trans. 2013;54:1510-1516. doi: 10.2320/matertrans.M-M2013809
- Beikmohammadi M, Yaghmaeian K, Nabizadeh R, Mahvi AH. Analysis of heavy metal, rare, precious, and metallic element content in bottom ash from municipal solid waste incineration in Tehran based on particle size. Sci Rep. 2023;13:16044. doi: 10.1038/s41598-023-43139-1
- Li L, Wu M. An overview of utilizing CO2 for accelerated carbonation treatment in the concrete industry. J CO2 Util. 2022;60:1-17. doi: 10.1016/j.jcou.2022.10200043
- Huijgen WJJ, Witkamp GJ, Comans RNJ. Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol. 2005;39:9676-9682. doi: 10.1021/es050795f
- Meima JA, Van der Weijden RD, Eighmy TT, Comans RNJ. Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Appl Geochemistry. 2002;17:1503-1513. doi: 10.1016/S0883-2927(02)00015-X
- Feng Y, Li X, Wu H, Li C, Zhang M, Yang H. Critical review of Ca(OH)2/CaO thermochemical energy storage materials. Energies. 2003;16:3019. doi: 10.3390/en16073019
- Du H, Steinacher M, Borca C, et al. Amorphous CaCO3: Influence of the formation time on its degree of hydration and stability. J Am Chem Soc. 2018;140:14289-14299. doi: 10.1021/jacs.8b08298
- Chimenos JM, Fernández AI, Nadal R, Espiell F. Short-term natural weathering of MSWI bottom ash. J Hazard Mater. 2000;79:287-299. doi: 10.1016/s0304-3894(00)00270-3
- Astrup T, Rosenblad C, Trapp S, Christensen T. Chromium release from waste incineration air-pollution-control residues. Environ Sci Technol. 2005;39:3321-3329. doi: 10.1021/es049346q
- Nordmark D, Lagerkvist A. Controlling the mobility of chromium and molybdenum in MSWI fly ash in a washing process. Waste Manage. 2018;76:727-733. doi: 10.1016/j.wasman.2018.03.016
- Freyssinet P, Piantone P, Azaroual M, et al. Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Manage. 2002;22:159-172. doi: 10.1016/S0956-053X(01)00065-4