Microbiome as a modulator of immunotherapy response in pancreatic cancer
Pancreatic adenocarcinoma is widely regarded as one of the most lethal malignancies due to its rapid progression and the limited success of early detection methods and therapeutic interventions. While immunotherapy has emerged as an effective treatment option for various solid tumors, it has not demonstrated comparable efficacy in pancreatic cancer. Further research is required to evaluate the safety and efficacy of different immunotherapy modalities, including immune checkpoint inhibitors, T-cell transfer therapy, chimeric antigen receptor T-cell therapy, neoantigen vaccines, and epigenome-targeting treatments, specifically in the context of pancreatic cancer. Emerging evidence highlights the crucial role of the microbiome in modulating cancer cells’ responses to immunotherapy. Studies have increasingly implicated the gut microbiota composition as a direct influencer of tumorigenesis in pancreatic cancer. Certain microbial species have been shown to exert immunostimulatory or immunosuppressive effects on pancreatic cancer cells, thereby directly enhancing or suppressing their response to immunotherapeutic regimens. Despite these findings, there remains a paucity of comprehensive reviews on microbiome studies specific to individual immunotherapy modalities in pancreatic cancer. This review highlights the exciting potential of the microbiome in modulating pancreatic cancer responses across various immunotherapy subtypes and emphasizes the clinical need for further research in the field.
- Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33. doi: 10.3322/caac.21708
- Lippi G, Mattiuzzi C. The global burden of pancreatic cancer. Arch Med Sci. 2020;16(4):820-824. doi: 10.5114/aoms.2020.94845
- Barreto SG, Shukla PJ, Shrikhande SV. Tumors of the pancreatic body and tail. World J Oncol. 2010;1(2):52-65. doi: 10.4021/wjon2010.04.200w
- Ushio J, Kanno A, Ikeda E, et al. Pancreatic ductal adenocarcinoma: Epidemiology and risk factors. Diagnostics (Basel). 2021;11(3):562. doi: 10.3390/diagnostics11030562
- Suurmeijer JA, Soer EC, Dings MPG, et al. Impact of classical and basal-like molecular subtypes on overall survival in resected pancreatic cancer in the SPACIOUS-2 multicentre study. Br J Surg. 2022;109(11):1150-1155. doi: 10.1093/bjs/znac272
- Rogers S, Charles A, Thomas RM. The prospect of harnessing the microbiome to improve immunotherapeutic response in pancreatic cancer. Cancers. 2023;15(24):5708. doi: 10.3390/cancers15245708
- Bangolo AI, Trivedi C, Jani I, et al. Impact of gut microbiome in the development and treatment of pancreatic cancer: Newer insights. World J Gastroenterol. 2023;29(25):3984-3998. doi: 10.3748/wjg.v29.i25.3984
- Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet. 2016;388(10039):73-85. doi: 10.1016/S0140-6736(16)00141-0
- Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350-1355. doi: 10.1126/science.aar4060
- O’Reilly EM, Oh DY, Dhani N, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: A phase 2 randomized clinical trial. JAMA Oncol. 2019;5(10):1431-1438. doi: 10.1001/jamaoncol.2019.1588
- Kamath SD, Kalyan A, Kircher S, et al. Ipilimumab and gemcitabine for advanced pancreatic cancer: A phase Ib study. Oncologist. 2020;25(5):e808-e815. doi: 10.1634/theoncologist.2019-0473
- Mahalingam D, Wilkinson GA, Eng KH, et al. Pembrolizumab in combination with the oncolytic virus Pelareorep and chemotherapy in patients with advanced pancreatic adenocarcinoma: A phase Ib study. Clin Cancer Res. 2020;26(1):71-81. doi: 10.1158/1078-0432.CCR-19-2078
- Krishnamurthy A, Jimeno A. Atezolizumab: A novel PD-L1 inhibitor in cancer therapy with a focus in bladder and non-small cell lung cancers. Drugs Today (Barc). 2017;53(4):217-237. doi: 10.1358/dot.2017.53.4.2589163
- Necchi A, Joseph RW, Loriot Y, et al. Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: Post-progression outcomes from the phase II IMvigor210 study. Ann Oncol. 2017;28(12):3044-3050. doi: 10.1093/annonc/mdx518
- Fukunaga A, Miyamoto M, Cho Y, et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas. 2004;28(1):e26-e31. doi: 10.1097/00006676-200401000-00023
- Schmitz-Winnenthal FH, Volk C, Z’Graggen K, et al. High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res. 2005;65(21):10079-10087. doi: 10.1158/0008-5472.CAN-05-1098
- Neesse A, Algul H, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: A changing paradigm. Gut. 2015;64(9):1476-1484. doi: 10.1136/gutjnl-2015-309304
- Zhao P, Wang Y, Kang X, et al. Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chem Sci. 2018;9(10):2674-2689. doi: 10.1039/c7sc04853j
- Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shaked Y, Yefenof E. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A. 2019;116(4):1361-1369. doi: 10.1073/pnas.1812266115
- Tsunedomi R, Shindo Y, Nakajima M, Yoshimura K, Nagano H. The tumor immune microenvironment in pancreatic cancer and its potential in the identification of immunotherapy biomarkers. Expert Rev Mol Diagn. 2023;23(12):1121-1134. doi: 10.1080/14737159.2023.2281482
- Ryschich E, Notzel T, Hinz U, Autschbach F, Kaufmann M, Klar E. Control of T-cell-mediated immune response by HLA class I in human pancreatic carcinoma. Clin Cancer Res. 2005;11(2 Pt 1):498-504.
- Malladi S, Macalinao DG, Jin X, et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell. 2016;165(1):45-60. doi: 10.1016/j.cell.2016.02.025
- Böttcher JP, Bonavita E, Chakravarty P, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018;172(5):1022.e14-1037.e14. doi: 10.1016/j.cell.2018.01.004
- Skertich NJ, Chu F, Tarhoni IA, Szajek S, Borgia JA, Madonna MB. Expression of immunomodulatory checkpoint molecules in drug-resistant neuroblastoma: An exploratory study. Cancers. 2022;14(3):751. doi: 10.3390/cancers14030751
- Böger C, Behrens HM, Krüger S, Röcken C. The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? Oncoimmunology. 2017;6(4):e1293215. doi: 10.1080/2162402x.2017.1293215
- Faget J, Biota C, Bachelot T, et al. Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells. Cancer Res. 2011;71(19):6143-6152. doi: 10.1158/0008-5472.Can-11-0573
- Padoan A, Plebani M, Basso D. Inflammation and pancreatic cancer: Focus on metabolism, cytokines, and immunity. Int J Mol Sci. 2019;20(3):676. doi: 10.3390/ijms20030676
- Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10(3):181-193. doi: 10.1038/nrc2809
- Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-264. doi: 10.1038/nrc3239
- ElTanbouly MA, Croteau W, Noelle RJ, Lines JL. VISTA: A novel immunotherapy target for normalizing innate and adaptive immunity. Semin Immunol. 2019;42:101308. doi: 10.1016/j.smim.2019.101308
- Thomas AA, Fisher JL, Hampton TH, Galbraith K, Gilbert MR, Lathia JD. Immune modulation associated with vascular endothelial growth factor (VEGF) blockade in patients with glioblastoma. Cancer Immunol Immunother. 2017;66(3):379-389. doi: 10.1007/s00262-016-1941-3
- Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16(1):223-249. doi: 10.1146/annurev-pathol-042020-042741
- Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270(5238):985-988. doi: 10.1126/science.270.5238.985
- Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141-151. doi: 10.1016/s1074-7613(00)80089-8
- León-Letelier RA, Dou R, Vykoukal J, et al. Contributions of the microbiome-derived metabolome for risk assessment and prognostication of pancreatic cancer. Clin Chem. 2024;70(1):102-115. doi: 10.1093/clinchem/hvad186
- Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes. 2024;16(1):2320280. doi: 10.1080/19490976.2024.2320280
- Attebury H, Daley D. The gut microbiome and pancreatic cancer development and treatment. Cancer J. 2023;29(2):49-56. doi: 10.1097/PPO.0000000000000647
- Zhao F, Chen A, Wu X, Sun J, Wang X, Zhang J. Heterogeneous changes in gut and tumor microbiota in patients with pancreatic cancer: Insights from clinical evidence. BMC Cancer. 2024;24:478. doi: 10.1186/s12885-024-12202-z
- Pourali G, Kazemi D, Chadeganipour AS, Rezvanfar M. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol. 2024;24:16. doi: 10.1186/s12866-023-03166-4
- Guo X, Zhang L, Li Q, Chen Z. Microbiomes in pancreatic cancer can be an accomplice or a weapon. Crit Rev Oncol Hematol. 2024;194:104262. doi: 10.1016/j.critrevonc.2024.104262
- Bastos AR, Pereira-Marques J, Ferreira RM, Figueiredo C. Harnessing the microbiome to reduce pancreatic cancer burden. Cancers (Basel). 2023;15(9):2629. doi: 10.3390/cancers15092629
- Ansari D, Ibrahim H, Andersson R. Microbiome alterations in pancreatic cancer: New insights and potential clinical implications. Scand J Gastroenterol. 2023;59(2):202-203. doi: 10.1080/00365521.2023.2261062
- Kang X, Lau HC, Yu J. Modulating gut microbiome in cancer immunotherapy: Harnessing microbes to enhance treatment efficacy. Cell Rep Med. 2024;5(4):101478. doi: 10.1016/j.xcrm.2024.100598
- Papa V, Schepis T, Coppola G, et al. The role of microbiota in pancreatic cancer. Cancers (Basel). 2023;15(12):3143. doi: 10.3390/cancers15123143
- Chai Y, Huang Z, Shen X, et al. Microbiota regulates pancreatic cancer carcinogenesis through altered immune response. Microorganisms. 2023;11(5):1240. doi: 10.3390/microorganisms11051240
- Halle-Smith JM, Hall LA, Powell-Brett SF, et al. Pancreatic exocrine insufficiency and the gut microbiome in pancreatic cancer: A target for future diagnostic tests and therapies? Cancers (Basel). 2023;15(21):5140. doi: 10.3390/cancers15215140
- Zhang B, Liu J, Li H, et al. Integrated multi-omics identified the novel intratumor microbiome-derived subtypes and signature to predict the outcome, tumor microenvironment heterogeneity, and immunotherapy response for pancreatic cancer patients. Front Pharmacol. 2023;14:1244752. doi: 10.3389/fphar.2023.1244752
- Villemin C, Six A, Neville BA, Lawley TD, Robinson MJ, Bakdash G. The heightened importance of the microbiome in cancer immunotherapy. Trends Immunol. 2023;44(1):44-59. doi: 10.1016/j.it.2023.10.004
- Nista EC, Del Gaudio A, Del Vecchio LE, et al. Pancreatic cancer resistance to treatment: The role of microbiota. Biomedicines. 2023;11(1):157. doi: 10.3390/biomedicines11010157
- Halle-Smith JM, Pearce H, Nicol S, et al. Involvement of the gut microbiome in the local and systemic immune response to pancreatic ductal adenocarcinoma. Cancers (Basel). 2024;16(5):996. doi: 10.3390/cancers16050996
- Freeman GJ, Long AJ, Iwai Y, Dahan R, Fitz LJ, Byrne MC. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027-1034. doi: 10.1084/jem.192.7.1027
- Nishimura, H., Nose, M., Hiai, H., Minato, N., & Honjo, T. (1999). Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 11(2), 141-151. doi: 10.1016/s1074-7613(00)80089-8
- Rataj F, Kraus FBT, Chaloupka M, Rajasekaran D, Hecht C, Maier B. PD1-CD28 fusion protein enables CD4+ T cell help for adoptive T cell therapy in models of pancreatic cancer and non-Hodgkin lymphoma. Front Immunol. 2018;9:955. doi: 10.3389/fimmu.2018.01955
- Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388-398. doi: 10.1158/2159-8290.CD-12-0548
- Xiong HQ, Rosenberg A, LoBuglio A, Bennett M, McCarthy R. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: A multicenter phase II trial. J Clin Oncol. 2004;22(13):2610-2616. doi: 10.1200/JCO.2004.12.040
- Thompson JK, Bednar F. Clinical utility of epigenetic changes in pancreatic adenocarcinoma. Epigenomes. 2021;5(4):20. doi: 10.3390/epigenomes5040020
- Lutz ER, Wu AA, Bigelow E, Svoronos N, Fisher R. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res. 2014;2(7):616-631. doi: 10.1158/2326-6066.CIR-14-0027
- Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019;25(13):3753-3758. doi: 10.1158/1078-0432.CCR-18-4070
- Buchsbaum DJ, Bonner JA, Grizzle WE, Allred DC, Gehan EA. Treatment of pancreatic cancer xenografts with Erbitux (IMC-C225) anti-EGFR antibody, gemcitabine, and radiation. Int J Radiat Oncol Biol Phys. 2002;54(4):1180-1193. doi: 10.1016/S0360-3016(02)03788-4
- Tauriello DVF, Palomo-Ponce S, Stork D, Sancho E. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554(7693):538-543. doi: 10.1038/nature25492
- Brahmer JR, Tykodi SS, Chow LQM, Hwu WJ, Topalian SL, Smith DC. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455-2465. doi: 10.1056/NEJMoa1200694
- Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19(56):6550-6565. doi: 10.1038/sj.onc.1204082
- Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh R. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409-413. doi: 10.1126/science.aan6733
- Ahmed N, Salsman VS, Yvon E, McIntyre R, Nishida Y. Immunotherapy for osteosarcoma: Genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther. 2009;17(10):1779-1787. doi: 10.1038/mt.2009.133
- Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: Driving T cells to solid tumors. Cancer Discov. 2016;6(2):133-146. doi: 10.1158/2159-8290.CD-15-0583
- Wachsmann TLA, Wouters AK, Remst DFG, Santegoets SJAM. Comparing CAR and TCR engineered T cell performance as a function of tumor cell exposure. Oncoimmunology. 2022;11(1):2033528. doi: 10.1080/2162402X.2022.2033528
- Jiang H, Shi Z, Wang P, Liu X, Zhang Y. Claudin18.2- specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. JNCI J Natl Cancer Inst. 2018;111(4):409-418. doi: 10.1093/jnci/djy134
- Foley K, Kim V, Jaffee E, Zheng L. Current progress in immunotherapy for pancreatic cancer. Cancer Lett. 2016;381(1):244-251. doi: 10.1016/j.canlet.2015.12.020
- Maus MV, Haas AR, Beatty GL, Albelda SM. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res. 2013;1(1):26-31. doi: 10.1158/2326-6066.CIR-13-0006
- Jaffee EM, Hruban RH, Biedrzycki B, Lutz ER. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: A phase I trial of safety and immune activation. J Clin Oncol. 2001;19(1):145-156. doi: 10.1200/JCO.2001.19.1.145
- Wang T, Wang D, Yu H, et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat Commun. 2018;9(1):1532. doi: 10.1038/s41467-018-03915-4
- Gjertsen MK, Breivik J, Saeterdal I, Kvalheim G. Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet. 1995;346(8987):1399-1400. doi: 10.1016/S0140-6736(95)92408-6
- Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007;8(4):286-298. doi: 10.1038/nrg2005
- Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol. 2005;45:629-656. doi: 10.1146/annurev.pharmtox.45.120403.095832
- Sato N, Fukushima N, Matsubayashi H, Goggins M. Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene. 2004;23(8):1531-1538. doi: 10.1038/sj.onc.1207269
- Mahon PC, Baril P, Bhakta V, Stevens M. S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer. Cancer Res. 2007;(14):6786-6795. doi: 10.1158/0008-5472.CAN-07-0440
- Zhou WY, Zhang MM, Liu C, Kang Y, Wang JO, Yang XH. Long noncoding RNA LINC00473 drives the progression of pancreatic cancer via upregulating programmed death-ligand 1 by sponging microRNA-195-5p. J Cell Physiol. 2019;234(12):23176-23189. doi: 10.1002/jcp.28884
- Bauden M, Pamart D, Ansari D, Andersson R. Circulating nucleosomes as epigenetic biomarkers in pancreatic cancer. Clin Epigenet. 2015;7:106. doi: 10.1186/s13148-015-0139-4
- Von Hoff DD, Rasco DW, Heath EI, Wang X, Wei X, Zhang Y. Phase I study of CC-486 alone and in combination with carboplatin or nab-paclitaxel in patients with relapsed or refractory solid tumors. Clin Cancer Res. 2018;24(17):4072-4080. doi: 10.1158/1078-0432.CCR-17-3716
- Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81(4):303-311. doi: 10.1111/j.1399-0004.2011.01809.x
- Fabbri M, Calore F, Paone A, Galli R, Calin GA. Epigenetic regulation of miRNAs in cancer. Adv Exp Med Biol. 2013;754:137-148. doi: 10.1007/978-1-4419-9967-2_6
- Cioffi M, Trabulo SM, Vallespinos M, Dusetti NJ, De Giorgio A. The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget. 2017;8(13):21609-21625. doi: 10.18632/oncotarget.15450
- Jia L, Xi Q, Wang H, Zhang Q, Liu T. miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity. Biochem Biophys Res Commun. 2017;488(2):425-431. doi: 10.1016/j.bbrc.2017.05.074
- Vetizou M, Pitt JM, Daillere R, Messaoudi I. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079-1084. doi: 10.1126/science.aad1329
- Sivan A, Corrales L, Hubert N, Williams JA, Aquino- Michaels K, Gajewski TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084-1089. doi: 10.1126/science.aac4255
- Pushalkar S, Hundeyin M, Daley D, Mantri C. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8(4):403-416. doi: 10.1158/2159-8290.CD-17-1134
- Tanoue T, Morita S, Plichta DR, Shinohara M. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(7741):600-605. doi: 10.1038/s41586-019-0878-z
- Routy B, Le Chatelier E, Derosa L, Alou MT. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91-97. doi: 10.1126/science.aan3706
- Komai-Koma M, Wang E, Kurowska-Stolarska M, Li D, McSharry C, Xu D. Interleukin-33 promoting Th1 lymphocyte differentiation depends on IL-12. Immunobiology. 2016;221(3):412-417. doi: 10.1016/j.imbio.2015.11.013
- Gopalakrishnan V, Spencer CN, Nezi L, Reuben A. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97-103. doi: 10.1126/science.aan4236
- Mitsuhashi K, Nosho K, Sukawa Y, Ogawa S. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 2015;6(9):7209-7210. doi: 10.18632/oncotarget.3109
- Lehouritis P, Cummins J, Stanton M, Smith T. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep. 2015;5:14554. doi: 10.1038/srep14554
- Vande Voorde J, Sabuncuoglu S, Noppen S, Vandenbroucke R. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem. 2014;289(19):13054-13065. doi: 10.1074/jbc.M114.558924
- Zeng M, Mao XH, Li JX, Liu CM. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386(10002):1457-1464. doi: 10.1016/S0140-6736(15)60310-5
- Ogrendik M. Periodontal pathogens in the etiology of pancreatic cancer. Gastrointest Tumors. 2017;3(3-4):125-127. doi: 10.1159/000452708
- Farrell JJ, Zhang L, Zhou H, Liu Y. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61(4):582-588. doi: 10.1136/gutjnl-2011-300784
- Lu H, Ren Z, Li A, Ma L. Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls. J Oral Microbiol. 2019;11(1):1563409. doi: 10.1080/20002297.2018.1563409
- Del Castillo E, Meier R, Chung M, Rausch P. The microbiomes of pancreatic and duodenum tissue overlap and are highly subject-specific but differ between pancreatic cancer and noncancer subjects. Cancer Epidemiol Biomark Prev. 2019;28(2):370-383. doi: 10.1158/1055-9965.EPI-18-0542
- Riquelme E, Zhang Y, Zhang L, Yoon S. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019;178(4):795.e12-806.e12. doi: 10.1016/j.cell.2019.07.008
- Geller LT, Barzily-Rokni M, Danino T, Jamin Y. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357(6356):1156-1160. doi: 10.1126/science.aah5043