REVIEW ARTICLE

Alpha lipoic acid as a modulator of the AMPK-p53 axis: Mechanisms and therapeutic potential in hepatocellular carcinoma progression

Tamer A. Addissouky1,2,3,4*
Show Less
1 Department of Medical Laboratories Techniques, College of Technology and Health Sciences, Al-Mustaqbal University, Hillah, Babylon, Iraq
2 Department of Biochemistry, Faculty of Science, Menoufia University, Menoufia, Egypt
3 Department of Medical Laboratories, New burg El-Arab Hospital, Ministry of Health, Alexandria, Egypt
4 American Society for Clinical Pathology, Chicago, United States of America
CP 2024, 6(4), 4867
Submitted: 17 September 2024 | Accepted: 25 October 2024 | Published: 7 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, with metastasis significantly impacting patient outcomes. Alpha lipoic acid (ALA), a potent antioxidant, has shown promise in cancer treatment due to its ability to modulate key cellular pathways. The AMP-activated protein kinase (AMPK)-p53 axis plays a critical role in regulating cellular metabolism and tumor suppression, making it an attractive target for HCC therapy. This review aims to elucidate the potential of ALA as a modulator of the AMPK-p53 axis in HCC progression, focusing on its mechanisms and therapeutic potential in inhibiting metastasis. ALA exerts its anti-cancer effects through multiple mechanisms, including direct antioxidant activity, activation of AMPK, and modulation of p53 function. In HCC, ALA has been shown to inhibit cell proliferation, induce apoptosis, and suppress epithelial-mesenchymal transition, a key process in metastasis. ALA activates AMPK, which in turn inhibits mammalian target of rapamycin signaling and promotes p53 activation. This leads to cell cycle arrest, increased apoptosis, and reduced metastatic potential. In addition, ALA’s ability to modulate mitochondrial function and reduce oxidative stress further contributes to its anti-cancer properties. Preclinical studies have demonstrated ALA’s efficacy in reducing tumor growth and metastasis in HCC models, suggesting its potential as an adjunct therapy. The modulation of the AMPK-p53 axis by ALA represents a promising approach for HCC treatment, particularly in addressing metastasis. Further research is needed to optimize ALA’s therapeutic potential and evaluate its efficacy in combination with existing HCC therapies. This review highlights the importance of targeting metabolic and tumor suppressor pathways in developing novel strategies for HCC management.

Graphical abstract
Keywords
Hepatocellular carcinoma
Alpha lipoic acid
AMPK-p53 axis
Epithelial-mesenchymal transition
Metastasis inhibition
Funding
None.
Conflict of interest
The author declares that he has no competing interests.
References
  1. Thomas JA, Kendall BJ, El-Serag HB, Thrift AP, Macdonald GA. Hepatocellular and extrahepatic cancer risk in people with non-alcoholic fatty liver disease. Lancet Gastroenterol Hepatol. 2024;9(2):159-169. doi: 10.1016/s2468-1253(23)00275-3

 

  1. Crane H, Eslick GD, Gofton C, et al. Global prevalence of metabolic dysfunction-associated fatty liver disease-related hepatocellular carcinoma: A systematic review and meta-analysis. Clin Mol Hepatol. 2024;30(3):436-448. doi: 10.3350/cmh.2024.0109

 

  1. Addissouky TA, EI Sayed IET, Ali MMA, et al. Latest advances in hepatocellular carcinoma management and prevention through advanced technologies. Egypt Liver J. 2024;14:2. doi: 10.1186/s43066-023-00306-3

 

  1. Sankar K, Gong J, Osipov A, et al. Recent advances in the management of hepatocellular carcinoma. Clin Mol Hepatol. 2024;30(1):1-15. doi: 10.3350/cmh.2023.0125

 

  1. De Mattos AZ, Bombassaro IZ, Vogel A, Debes JD. Hepatocellular carcinoma-the role of the underlying liver disease in clinical practice. World J Gastroenterol. 2024;30(19):2488-2495. doi: 10.3748/wjg.v30.i19.2488

 

  1. Addissouky TA. Transforming screening, risk stratification, and treatment optimization in chronic liver disease through data science and translational innovation. Indones J Gastroenterol Hepatol Dig Endosc. 2024;25(1):53-62. doi: 10.24871/251202453-62

 

  1. Mak L, Liu K, Chirapongsathorn S, et al. Liver diseases and hepatocellular carcinoma in the Asia-Pacific region: Burden, trends, challenges and future directions. Nat Rev Gastroenterol Hepatol. 2024;21:834-851. doi: 10.1038/s41575-024-00967-4

 

  1. Poli E, De Martin, E. Progression of liver disease and associated risk of hepatocellular carcinoma. Hepatoma Res. 2024;10:15. doi: 10.20517/2394-5079.2023.101

 

  1. Addissouky TA. Precision medicine for personalized cholecystitis care: Integrating molecular diagnostics and biotherapeutics. Bull Natl Res Cent. 2024;48:89. doi: 10.1186/s42269-024-01244-9

 

  1. Jesús Rivera-Esteban, Muñoz-Martínez S, Higuera M, et al. Phenotypes of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2024;22:1774-1789.e8. doi: 10.1016/j.cgh.2024.03.028

 

  1. Addissouky TA, EI Sayed IET, Ali MMA, et al. Emerging biomarkers for precision diagnosis and personalized treatment of cystic fibrosis. J Rare Dis. 2024;3:28. doi: 10.1007/s44162-024-00052-z

 

  1. Galasso L, Cerrito L, Maccauro V, et al. Inflammatory response in the pathogenesis and treatment of hepatocellular carcinoma: A double-edged weapon. Int J Mol Sci. 2024;25(13):7191-7191. doi: 10.3390/ijms25137191

 

  1. Addissouky TA. Emerging therapeutics targeting cellular stress pathways to mitigate end-organ damage in type 1 diabetes. Avicenna J Med Biochem. 2024;12(1):39-46. doi: 10.34172/ajmb.2527

 

  1. Aryan M, Ruli T, Shoreibah M. HCC in patients without cirrhosis: A review. Clin Liver Dis. (Hoboken). 2024;23(1):e0224. doi: 10.1097/cld.0000000000000224

 

  1. Addissouky TA, Ali MMA, El Sayed IET, Wang Y. Type 1 diabetes mellitus: Retrospect and prospect. Bull Natl Res Cent. 2024;48:42. doi: 10.1186/s42269-024-01197-z

 

  1. Tahir H, Verma M, Siraj B, Kalman RS. Navigating cirrhosis: Presentation, outcomes, and treatments in adulthood and beyond. Curr Treat Options Gastroenterol. 2024;22:218. doi: 10.1007/s11938-024-00461-5

 

  1. Addissouky TA, Ali M, El Sayed IET, Wang Y. Revolutionary innovations in diabetes research: From biomarkers to genomic medicine. IJDO. 2023;15(4):228-242. doi: 10.18502/ijdo.v15i4.14556

 

  1. Vitale A, Angelico R, Sensi B, et al. What is the role of minimally invasive liver surgery in treating patients with hepatocellular carcinoma on cirrhosis? Cancers (Basel). 2024;16(5):966-966. doi: 10.3390/cancers16050966

 

  1. Leyh C, Coombes JD, Schmidt HH, Canbay A, Manka PP, Best J. MASLD-related HCC-update on pathogenesis and current treatment options. J Pers Med. 2024;14(4):370-370. doi: 10.3390/jpm14040370

 

  1. Jahagirdar V, Rama K, Habeeb MF, et al. Systemic therapies for hepatocellular carcinoma in India. J Clin Exp Hepatol. 2024;14(6):101440-101440. doi: 10.1016/j.jceh.2024.101440

 

  1. Liu J, Xia S, Zhang B, et al. Small molecule tyrosine kinase inhibitors approved for systemic therapy of advanced hepatocellular carcinoma: Recent advances and future perspectives. Discov Oncol. 2024;15(1):259. doi: 10.1007/s12672-024-01110-0

 

  1. Wu TKH, Hui RWH, Mak LY, Fung J, Seto WK, Yuen MF. Hepatocellular carcinoma: Advances in systemic therapies. F1000Research. 2024;13:104-104. doi: 10.12688/f1000research.145493.2

 

  1. Hidalgo F, Ferretti AC, Etichetti CB, et al. Alpha lipoic acid diminishes migration and invasion in hepatocellular carcinoma cells through an AMPK-p53 axis. Sci Rep. 2024;14(1):21275. doi: 10.1038/s41598-024-72309-y

 

  1. De Staercke L, Montégut L, Schwartz L, Jolicoeur M. Hyperosmolarity triggers the warburg effect in chinese hamster ovary cells and reveals a reduced mitochondria horsepower. Metabolites. 2021;11(6):344. doi: 10.3390/metabo11060344

 

  1. Selene II, Ozen M, Patel RA. Hepatocellular carcinoma: Advances in systemic therapy. Semin Interv Radiol. 2024;41(1):56-62. doi: 10.1055/s-0044-1779713

 

  1. Storoschuk K, Lesiuk D, Nuttall J, et al. Impact of fasting on the AMPK and PGC-1α axis in rodent and human skeletal muscle: A systematic review. Metabolism. 2024;152:155768. doi: 10.1016/j.metabol.2023.155768

 

  1. Townsend LK, Steinberg GR. AMPK and the endocrine control of metabolism. Endocr Rev. 2023;44(5):910-933. doi: 10.1210/endrev/bnad012

 

  1. Addissouky TA, El Sayed IET, Ali MMA, Wang Y, Khalil AA. Emerging technologies and advanced biomarkers for enhanced toxicity prediction and safety pharmacology. Adv Clin Toxicol. 2024;9(1):293. doi: 10.23880/act-16000293

 

  1. Addissouky TA, Wang Y, El Sayed IET, Majeed MAA, Khalil AA. Transforming toxicity assessment through microphysiology, bioprinting, and computational modeling. Adv Clin Toxicol. 2024;16(2):295. doi: 10.23880/act-16000295

 

  1. Guo DZ, Zhang X, Zhang SQ, et al. Single-cell tumor heterogeneity landscape of hepatocellular carcinoma: Unraveling the pro-metastatic subtype and its interaction loop with fibroblasts. Mol Cancer. 2024;23:157. doi: 10.1186/s12943-024-02062-3

 

  1. Pibiri M, Sulas P, Camboni T, Leoni VP, Simbula G. α-Lipoic acid induces endoplasmic reticulum stress-mediated apoptosis in hepatoma cells. Sci Rep. 2020;10(1):7139. doi: 10.1038/s41598-020-64004-5

 

  1. Wang J, Hu Y, Zhao K, et al. Comprehensive analysis of the expression of cell adhesion molecules genes in hepatocellular carcinoma and their prognosis, and biological significance. Front Biosci. (Landmark Ed). 2024;29(2):76. doi: 10.31083/j.fbl2902076

 

  1. Shi X, Wang X, Yao W, et al. Mechanism insights and therapeutic intervention of tumor metastasis: Latest developments and perspectives. Signal Transduct Target Ther. 2024;9(1):254. doi: 10.1038/s41392-024-01885-2

 

  1. Rinella ME, Lazarus JV, Ratziu V, et al. NAFLD nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79(6):1542-1556. doi: 10.1016/j.jhep.2023.06.003

 

  1. Addissouky TA, El Sayed IET, Majeed MAA. Regenerating damaged joints: The promise of tissue engineering and nanomedicine in lupus arthritis. J Clin Orthop Trauma Care. 2024;6(2). doi: 10.31579/2694-0248

 

  1. Addissouky TA, El Sayed IET, Majeed MAA. Conservative and emerging rehabilitative approaches for knee osteoarthritis management. J Clin Orthop Trauma Care. 2024;6(2). doi: 10.31579/2694-0248/082

 

  1. Li L, Yeo W. Value of quality of life analysis in liver cancer: A clinician’s perspective. World J Hepatol. 2017;9(20):867-883. doi: 10.4254/wjh.v9.i20.867

 

  1. Abdullah KM, Sharma G, Takkar S, et al. α-lipoic acid modulates prostate cancer cell growth and bone cell differentiation. Sci Reports. 2024;14(1):4404. doi: 10.1038/s41598-024-54479-x

 

  1. El-Maddawy ZK, El-Sawy ESF, Awad AA. Mitigating effect of alpha lipoic acid against hematological and renal impairments induced by Flunixin meglumine in male albino rats. J Adv Vet Res. 2023;14(4):572-578.

 

  1. Elmosalamy SH, Ahmed ZSO, Elleithy EMM, Rashad MM, Ali GE, Hassan NH. Novel therapeutic insights of Alpha lipoic acid: Antioxidant, and steroidogenesis regulatory role in letrozole induced PCOS rat model. Vet Med J Giza. 2024;70(1):26-45. doi: 10.21608/vmjg.2024.255839.1029

 

  1. Capece U, Moffa S, Improta I, et al. Alpha-lipoic acid and glucose metabolism: A comprehensive update on biochemical and therapeutic features. Nutrients. 2023;15(1):18. doi: 10.3390/nu15010018

 

  1. Yan S, Lu J, Chen B, et al. The multifaceted role of alpha-lipoic acid in cancer prevention, occurrence, and treatment. Antioxidants (Basel). 2024;13(8):897. doi: 10.3390/antiox13080897

 

  1. Addissouky TA, El Sayed IET, Ali MMA, Alubiady MHS, Wang Y. Towards personalized care: Unraveling the genomic and molecular basis of sepsis-induced respiratory complications. Arch Clin Toxicol. 2024;6(1):4-15. doi: 10.46439/toxicology.6.026

 

  1. Służały P, Paśko P, Galanty A. Natural products as hepatoprotective agents-a comprehensive review of clinical trials. Plants (Basel). 2024;13(14):1985. doi: 10.3390/plants13141985

 

  1. Pashaj A, Xia M, Moreau R. α-Lipoic acid as a triglyceride-lowering nutraceutical. Can J Physiol Pharmacol. 2015;93(12):1029-1041. doi: 10.1139/cjpp-2014-0480

 

  1. Ghantous Y, Mozalbat S, Nashef A, Sudri S, Araidy S, Tadmor H. EMT dynamics in lymph node metastasis of oral squamous cell carcinoma. Cancers (Basel). 2023;16(6):1185. doi: 10.3390/cancers16061185

 

  1. Addissouky TA, Ali MMA, El Sayed IET, Wang Y, Khalil AA. Translational insights into molecular mechanisms of chemical hepatocarcinogenesis for improved human risk assessment. Adv Clin Toxicol. 2024;9(1):294. doi: 10.23880/act-16000294

 

  1. Hui San S, Ching Ngai S. E-cadherin re-expression: Its potential in combating TRAIL resistance and reversing epithelial-to-mesenchymal transition. Gene. 2024;909:148293. doi: 10.1016/j.gene.2024.148293

 

  1. Holtzman D. The changing epidemiology of hepatitis C virus infection in the United States during the years 2010 to 2018. Am J Public Health. 2021;111(5):949-955. doi: 10.2105/AJPH.2020.306149

 

  1. Stasi C, Milli C, Voller F, Silvestri C. The epidemiology of chronic hepatitis C: Where we are now. Livers. 2024;4(2):172-181. doi: 10.3390/livers4020013

 

  1. Addissouky TA, Ali MMA, El Sayed IET, Wang Y. Recent advances in diagnosing and treating Helicobacter pylori through botanical extracts and advanced technologies. Arch Pharmacol Ther. 2023;5(1):53-66. doi: 10.33696/Pharmacol.4.045

 

  1. Addissouky TA, Wang Y, El Sayed IET, et al. Recent trends in Helicobacter pylori management: Harnessing the power of AI and other advanced approaches. Beni-Suef Univ J Basic Appl Sci. 2023;12:80. doi: 10.1186/s43088-023-00417-1

 

  1. Addissouky TA, Ali MMA, EI Sayed IET, et al. Emerging advanced approaches for diagnosis and inhibition of liver fibrogenesis. Egypt J Intern Med. 2024;36:19. doi: 10.1186/s43162-024-00283-y

 

  1. Jasim SA, Al-Hawary SIS, Hjazi A, et al. A comprehensive review of lncRNA CRNDE in cancer progression and pathology, with a specific glance at the epithelial-mesenchymal transition (EMT) process. Pathol Res Pract. 2024;256:155229-155229. doi: 10.1016/j.prp.2024.155229

 

  1. Tomecka P, Kunachowicz D, Górczyńska J, et al. Factors determining epithelial-mesenchymal transition in cancer progression. Int J Mol Sci. 2023;25(16):8972. doi: 10.3390/ijms25168972

 

  1. Liao J, Chen R, Lin B, et al. Cross-talk between the TGF-β and cell adhesion signaling pathways in cancer. Int J Med Sci. 2024;21(7):1307-1320. doi: 10.7150/ijms.96274

 

  1. Addissouky TA, El Sayed IET, Ali MMA, Alubiady MHS, Wang Y. Bending the curve through innovations to overcome persistent obstacles in HIV prevention and treatment. J AIDS HIV Treat. 2024;6(1):44-53. doi: 10.33696/AIDS.6.051

 

  1. Chen J, He F, Peng H, Guo J. The underlying mechanism and targeted therapy strategy of miRNAs cross-regulating EMT process through multiple signaling pathways in hepatocellular carcinoma. Front Mol Biosci. 2024;11:1378386. doi: 10.3389/fmolb.2024.1378386

 

  1. Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: Partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol. 2024;14:1407434. doi: 10.3389/fonc.2024.1407434

 

  1. Addissouky TA, El Sayed IET, Ali MMA, et al. Can vaccines stop cancer before it starts? assessing the promise of prophylactic immunization against high-risk preneoplastic lesions. J Cell Immunol. 2023;5(4):127-126. doi: 10.33696/immunology.5.178

 

  1. Xin X, Cheng X, Zeng F, Xu Q, Hou L. The role of TGF-β/ SMAD signaling in hepatocellular carcinoma: From mechanism to therapy and prognosis. Int J Biol Sci. 2024;20(4):1436-1451. doi: 10.7150/ijbs.89568

 

  1. Qin Y, Han S, Yu Y, et al. Lenvatinib in hepatocellular carcinoma: Resistance mechanisms and strategies for improved efficacy. Liver Int. 2024;44:1808-31. doi: 10.1111/liv.15953

 

  1. Addissouky TA, El Sayed IET, Ali, MMA, Alubiady MHS, Wang Y. Schisandra chinensis in liver disease: Exploring the mechanisms and therapeutic promise of an ancient Chinese botanical. Arch Pharmacol Therapeut. 2024;6(1):27-33. doi: 10.33696/pharmacol.6.052

 

  1. Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther. 2024;32:3260-3287. doi: 10.1016/j.ymthe.2024.08.001

 

  1. Addissouky TA, El Sayed IET, Ali MMA, Alubiady S. Realizing the promise of artificial intelligence in hepatocellular carcinoma through opportunities and recommendations for responsible translation. J Online Inform. 2024;9(1):70-79. doi: 10.15575/join.v9i1.1297

 

  1. Song P, Gao Z, Bao Y, et al. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 2024;17:46 doi: 10.1186/s13045-024-01563-4

 

  1. Addissouky TA, Ali MMA, El Sayed IET, et al. Preclinical promise and clinical challenges for innovative therapies targeting liver fibrogenesis. Arch Gastroenterol Res. 2023;4(1):14-23. doi: 10.33696/Gastroenterology.4.044

 

  1. Jin X, Wang S, Luo L, Yan F, He Q. Targeting the Wnt/β- catenin signal pathway for the treatment of gastrointestinal cancer: Potential for advancement. Biochem Pharmacol. 2024;227:116463-116463. doi: 10.1016/j.bcp.2024.116463

 

  1. Fan QQ, Tian H, Cheng JX, et al. Research progress of sorafenib drug delivery system in the treatment of hepatocellular carcinoma: An update. Biomed Pharmacother. 2024;177:117118-117118. doi: 10.1016/j.biopha.2024.117118

 

  1. Laddha AP, Wu H, Manautou JE. Deciphering acetaminophen-induced hepatotoxicity: The crucial role of transcription factors like nuclear factor erythroid 2-related factor 2 (NRF2) as genetic determinants of susceptibility to drug-induced liver injury. Drug Metab Dispos. 2024;52(8):740-753. doi: 10.1124/dmd.124.001282

 

  1. Tripathi S, Kharkwal G, Mishra R, Singh G. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in heavy metals-induced oxidative stress. Heliyon. 2024:e37545-e37545. doi: 10.1016/j.heliyon.2024.e37545

 

  1. El-Mahrouk SR, El-Ghiaty MA, El-Kadi AOS. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in arsenic toxicity. J Environ Sci. 2025;150:632-644. doi: 10.1016/j.jes.2024.02.027

 

  1. Hassan AMIA, Zhao Y, Chen X, He C. Blockage of autophagy for cancer therapy: A comprehensive review. Int J Mol Sci. 2024;25(13):7459. doi: 10.3390/ijms25137459

 

  1. Chakravarti B, Rajput S, Raza S, et al. Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness. Biochim Biophys Acta Mol Basis Dis. 2022;1868(10):166455. doi: 10.1016/j.bbadis.2022.166455

 

  1. Nguyen TH, Nguyen TM, Ngoc DT, You T, Park MK, Lee CH. Unraveling the Janus-faced role of autophagy in hepatocellular carcinoma: Implications for therapeutic interventions. Int J Mol Sci. 2023;24:16255. doi: 10.3390/ijms242216255

 

  1. Jomova K, Alomar SY, Alwasel SH, et al. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 2024;98:1323-1367. doi: 10.1007/s00204-024-03696-4

 

  1. Jiang YL, Li X, Tan YW, et al. Docosahexaenoic acid inhibits the invasion and migration of colorectal cancer by reversing EMT through the TGF-β1/Smad signaling pathway. Food Funct. 2024;15(18):9420-9433. doi: 10.1039/D4FO02346C

 

  1. Addissouky TA, El Sayed IET, Ali MMA, et al. Oxidative stress and inflammation: Elucidating mechanisms of smoking-attributable pathology for therapeutic targeting. Bull Natl Res Cent. 2024;48:16. doi: 10.1186/s42269-024-01174-6

 

  1. Li Y, Deng X, Tan X, et al. Protective role of curcumin in disease progression from non-alcoholic fatty liver disease to hepatocellular carcinoma: A meta-analysis. Front Pharmacol. 2024;15:1343193. doi: 10.3389/fphar.2024.1343193

 

  1. Panwar V, Singh A, Bhatt M, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther. 2023;8(1):375. doi: 10.1038/s41392-023-01608-z

 

  1. Keerthana CK, Rayginia TP, Shifana SC, et al. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol. 2023;14:1114582. doi: 10.3389/fimmu.2023.1114582

 

  1. Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond). 2024;44(3):297-360. doi: 10.1002/cac2.12520

 

  1. Cui D, Qu R, Liu D, Xiong X, Liang T, Zhao Y. The cross talk between p53 and mTOR pathways in response to physiological and genotoxic stresses. Front Cell Dev Biol. 2021;9:775507. doi: 10.3389/fcell.2021.775507

 

  1. Minciuna I, Stefanescu H, Procopet B. Is fasting good when one is at risk of liver cancer? Cancers (Basel). 2022;14(20):5084. doi: 10.3390/cancers14205084

 

  1. López-Cánovas JL, Naranjo-Martínez B, Diaz-Ruiz A. Fasting in combination with the cocktail Sorafenib: Metformin blunts cellular plasticity and promotes liver cancer cell death via poly-metabolic exhaustion. Cell Oncol (Dordr). 2024. doi: 10.1007/s13402-024-00966-2

 

  1. Xiao B, Jiang Y, Yuan S, Cai L, Xu T, Jia L. Silibinin, a potential fasting mimetic, inhibits hepatocellular carcinoma by triggering extrinsic apoptosis. MedComm (2020). 2024;5(1):e457. doi: 10.1002/mco2.457

 

  1. Kumar A, Pecquenard F, Baydoun M, et al. An efficient 5-aminolevulinic acid photodynamic therapy treatment for human hepatocellular carcinoma. Int J Mol Sci. 2023;24(13):10426. doi: 10.3390/ijms241310426

 

  1. Mamdouh AM, Khodeer DM, Tantawy MA, Moustafa YM. In-vitro and in-vivo investigation of amygdalin, metformin, and combination of both against doxorubicin on hepatocellular carcinoma. Life Sci. 2021;285:119961. doi: 10.1016/j.lfs.2021.119961

 

  1. Jiang X, Tan Y, Teng S, Chan T, Wang D, Wang N. The role of AMP-activated protein kinase as a potential target of treatment of hepatocellular carcinoma. Cancers (Basel). 2019;11(5):647. doi: 10.3390/cancers11050647

 

  1. Chen G, Li Y, Yang Y, Zhou H. Will AMPK be a potential therapeutic target for hepatocellular carcinoma? Am J Cancer Res. 2024;14(7):3241-3258. doi: 10.62347/YAVK1315

 

  1. Palomer X, Wahli W. The PPARβ/δ-AMPK connection in the treatment of insulin resistance. Int J Mol Sci. 2020;22(16):8555. doi: 10.3390/ijms22168555

 

  1. Omar MA, Omran MM, Farid K, et al. Biomarkers for hepatocellular carcinoma: From Origin to clinical diagnosis. Biomedicines. 2023;11(7):1852. doi: 10.3390/biomedicines11071852

 

  1. Wang G, Jiang X, Torabian P, Yang Z. Investigating autophagy and intricate cellular mechanisms in hepatocellular carcinoma: Emphasis on cell death mechanism crosstalk. Cancer Lett. 2024;588:216744. doi: 10.1016/j.canlet.2024.216744

 

  1. Torres MJ, Ríos JC, Valle A, et al. Alpha-lipoic acid-mediated inhibition of LTB4 synthesis suppresses epithelial-mesenchymal transition, modulating functional and tumorigenic capacities in non-small cell lung cancer A549 cells. Curr Ther Res. 2024;102:100765. doi: 10.1016/j.curtheres.2024.100765

 

  1. Addissouky TA. Polyploidy-mediated resilience in hepatic aging: Molecular mechanisms and functional implication. Egypt Liver J. 2024;14(1):1-14. doi: 10.1186/s43066-024-00391-y

 

  1. Addissouky TA. Liver stiffness as a dynamic predictor of decompensation and mortality in alcohol-related liver disease. Discov Med. 2024;1:96. doi: 10.1007/s44337-024-00083-x

 

  1. Addissouky TA. Translating molecular heterogeneity into precision medicine for advanced liver disease. Arch Gastroenterol Res. 2024;5(1):47-58. doi: 10.33696/gastroenterology.5.054

 

  1. Sha X, Zou, X, Liu S, et al. Forkhead box O1 in metabolic dysfunction-associated fatty liver disease: Molecular mechanisms and drug research. Front Nutr. 2024;11:1426780. doi: 10.3389/fnut.2024.1426780

 

  1. Ferraiuolo M, Verduci L, Blandino G, Strano S. Mutant p53 protein and the hippo transducers YAP and TAZ: A critical oncogenic node in human cancers. Int J Mol Sci. 2017;18(5):961. doi: 10.3390/ijms18050961

 

  1. Haronikova L, Bonczek O, Zatloukalova P, et al. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: Can we overcome them? Cell Mol Biol Lett. 2021;26:53. doi: 10.1186/s11658-021-00293-6

 

  1. Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 2024;9(1):1-37. doi: 10.1038/s41392-024-01757-9

 

  1. Semenov O, Daks A, Fedorova O, Shuvalov O, Barlev NA. Opposing roles of wild-type and mutant p53 in the process of epithelial to mesenchymal transition. Front Mol Biosci. 2022;9:928399. doi: 10.3389/fmolb.2022.928399

 

  1. Kucukgoncu S, Zhou E, Lucas KB, Tek C. Alpha-lipoic acid (ALA) as a supplementation for weight loss: Results from a meta-analysis of randomized controlled trials. Obes Rev. 2017;18(5):594. doi: 10.1111/obr.12528

 

  1. Behairy A, Ghetas HA, Abd-Allah NA, et al. Dietary alpha-lipoic acid boosts growth, immune-antioxidant traits, behavior, and transcriptomes of antioxidant, apoptosis, and immune-related genes to combat cold stress in Nile tilapia (Oreochromis niloticus). Aquac Int. 2024;32:4061-4090. doi: 10.1007/s10499-023-01365-4

 

  1. Laher I. Diabetes and alpha lipoic acid. Front Pharmacol. 2011;2:15229. doi: 10.3389/fphar.2011.00069

 

  1. Zhao Y, Ye L, Yu Y. MicroRNA-126-5p suppresses cell proliferation, invasion and migration by targeting EGFR in liver cancer. Clin Res Hepatol Gastroenterol. 2020;44(6):865-873. doi: 10.1016/j.clinre.2020.03.025

 

  1. Cheng A, Hsu C, Chan SL, Choo S, Kudo M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J Hepatol. 2020;72(2):307-319. doi: 10.1016/j.jhep.2019.09.025

 

  1. Sundi PRIO, Thipe VC, Omar MA, Adelusi TI, Gedefa J, Olaoba OT. Preclinical human and murine models of hepatocellular carcinoma (HCC). Clin Res Hepatol Gastroenterol. 2024;48(7):102418. doi: 10.1016/j.clinre.2024.102418

 

  1. Pinto E, Pelizzaro F, Farinati F, Russo FP. Angiogenesis and hepatocellular carcinoma: From molecular mechanisms to systemic therapies. Medicina. 2023;59(6):1115. doi: 10.3390/medicina59061115

 

  1. Anastasopoulos NA, Charchanti AV, Barbouti A, et al. The role of oxidative stress and cellular senescence in the pathogenesis of metabolic associated fatty liver disease and related hepatocellular carcinoma. Antioxidants (Basel). 2023;12(6):1269. doi: 10.3390/antiox12061269

 

  1. Chen Y, Tan X, Zhang W, et al. Natural products targeting macroautophagy signaling in hepatocellular carcinoma therapy: Recent evidence and perspectives. Phytother Res. 2024;38(3):1623-1650. doi: 10.1002/ptr.8103

 

  1. Shan L, Zhao N, Wang F, Zhai D, Liu J, Lv X. Caffeine in hepatocellular carcinoma: Cellular assays, animal experiments, and epidemiological investigation. J Inflamm Res. 2024;17:1589-1605. doi: 10.2147//JIR.S424384

 

  1. Mecca M, Sichetti M, Giuseffi M, et al. Synergic role of dietary bioactive compounds in breast cancer chemoprevention and combination therapies. Nutrients. 2023;16(12):1883. doi: 10.3390/nu16121883

 

Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing