Phytochemicals as neurotherapeutics in Alzheimer’s disease: Exploring plant-based interventions for emerging complex brain disorders
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and remains the most prevalent cause of dementia, accounting for approximately 60–70% of dementia cases worldwide and contributing substantially to disability and loss of independence in older adults. It is an increasing global health and economic burden. Its multifactorial, interconnected pathophysiology, including the deposition of amyloid-β (Aβ), hyperphosphorylation of tau, and neurofibrillary tangle (NFT) formation, as well as mitochondrial dysfunction and oxidative stress, makes treatment challenging because drugs targeting a single pathway often fail to cure or reverse the disease’s root cause. Conventional pharmaceutical therapies such as cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists offer only symptomatic relief with significant side effects. Hence, in this context, phytochemicals have emerged as promising neurotherapeutic candidates, due to their multi-target effects and reduced side effects. This review highlights key plant-derived bioactive compounds, including withanolides, curcumin, bacosides, epigallocatechin-3-gallate, resveratrol, rosmarinic acid, limonene, caffeic acid, and lycopene, and their proposed mechanisms relevant to AD prevention and management. Most studies on these bioactive compounds are preclinical. These phytochemicals have the potential to reduce Aβ plaque formation and tau pathology and to enhance antioxidant defense. Using nanotechnology approaches, their bioavailability can be improved. Therefore, by integrating traditional medicine knowledge with advanced molecular technologies, the phytochemical-based therapy can become a promising treatment for AD.
- Dementia. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia [Last accessed on 2025 Aug 12].
- Wimo A, Seeher K, Cataldi R, et al. The worldwide costs of dementia in 2019. Alzheimers Dement. 2023;19(7):2865-2873. doi: 10.1002/alz.12901
- Moutinho S. Women twice as likely to develop Alzheimer’s disease as men - but scientists do not know why. Nat Med. 2025;31(3):704-707. doi: 10.1038/S41591-025-03564-3
- Wu CK, Fuh JL. A 2025 update on treatment strategies for the Alzheimer’s disease spectrum. J Chin Med Assoc. 2025;88(7):495-502. doi: 10.1097/jcma.0000000000001252
- Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther. 2024;9(1):211. doi: 10.1038/s41392-024-01911-3
- Medications for Memory, Cognition & Dementia-Related Behaviors. Available from: https://www.alz.org/alzheimers-dementia/treatments/medications-for-memory [Last accessed on 2025 Aug 13].
- Sharifi-Rad J, Rapposelli S, Sestito S, et al. Multi-target mechanisms of phytochemicals in Alzheimer’s disease: Effects on oxidative stress, neuroinflammation and protein aggregation. J Pers Med. 2022;12(9):1515. doi: 10.3390/jpm12091515
- Deepa AV, Dennis TT. Plant extracts and phytochemicals targeting Alzheimer’s through acetylcholinesterase inhibition. Open Explor 2019 4. 2025;4:100697. doi: 10.37349/en.2025.100697
- Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010;12(1):1-12. doi: 10.1007/S12017-009-8104-z
- Liu X, Liu Y, Ji S. Secretases related to amyloid precursor protein processing. Membranes (Basel). 2021;11(12):983. doi: 10.3390/membranes11120983
- Hampel H, Hardy J, Blennow K, et al. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry. 2021;26(10):5481-5503. doi: 10.1038/s41380-021-01249-0
- Chen GF, Xu TH, Yan Y, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38(9):1205-1235. doi: 10.1038/APS.2017.28
- Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer’s disease states. Mol Brain. 2024;17(1):44. doi: 10.1186/s13041-024-01118-1
- Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol. 2017;133(5):665-704. doi: 10.1007/s00401-017-1707-9
- Garg RK, Malhotra HS, Kumar N. Pathophysiology of acute disseminated encephalomyelitis. In: Garg RK, editor. Multiple Sclerosis: A Mechanistic View. United States: Academic Press; 2016. p. 201-248. doi: 10.1016/b978-0-12-800763-1.00010-5
- Toral-Rios D, Pichardo-Rojas PS, Alonso-Vanegas M, Campos-Peña V. GSK3β and tau protein in Alzheimer’s disease and epilepsy. Front Cell Neurosci. 2020;14:19. doi: 10.3389/fncel.2020.00019
- Hernandez F, Lucas JJ, Avila J. GSK3 and tau: Two convergence points in Alzheimer’s disease. J Alzheimer’s Dis. 2013;33(Suppl 1):S141-S144. doi: 10.3233/jad-2012-129025
- Tau Protein and Alzheimer’s Disease: What’s the Connection? Available from: https://www.brightfocus.org/resource/tau-protein-and-alzheimers-disease-whats-the-connection [Last accessed on 2025 Aug 17].
- Chakraborty P, De Opakua AI, Purslow JA, et al. GSK3β phosphorylation catalyzes the aggregation of tau into Alzheimer’s disease-like filaments. Proc Natl Acad Sci USA. 2024;121(52):e2414176121. doi: 10.1073/pnas.2414176121 20. Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-2574. doi: 10.1007/s00204-023-03562-9
- Gelain DP, Antonio Behr G, Birnfeld De Oliveira R, Trujillo M. Antioxidant therapies for neurodegenerative diseases: Mechanisms, current trends, and perspectives. Oxid Med Cell Longev. 2012;2012:895153. doi: 10.1155/2012/895153
- Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016;4(5):519-522. doi: 10.3892/br.2016.630
- Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(2):335-344. doi: 10.1113/jphysiol.2003.049478
- Butterfield DA. The 2013 SFRBM discovery award: Selected discoveries from the butterfield laboratory of oxidative stressand its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med. 2014;74:157-174. doi: 10.1016/j.freeradbiomed.2014.06.006
- Butterfield DA. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res. 2002;36(12):1307-1313. doi: 10.1080/1071576021000049890
- Bhatia S, Rawal R, Sharma P, Singh T, Singh M, Singh V. Mitochondrial dysfunction in Alzheimer’s disease: Opportunities for drug development. Curr Neuropharmacol. 2021;20(4):675-692. doi: 10.2174/1570159x19666210517114016
- Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T, Bali S. Neuronal cell death mechanisms in Alzheimer’s disease: An insight. Front Mol Neurosci. 2022;15:937133. doi: 10.3389/fnmol.2022.937133
- Arendt T, Brückner MK, Morawski M, Jäger C, Gertz HJ. Early neurone loss in Alzheimer’s disease: Cortical or subcortical? Acta Neuropathol Commun. 2015;3:10. doi: 10.1186/s40478-015-0187-1
- Zhang X, Alshakhshir N, Zhao L. Glycolytic metabolism, brain resilience, and Alzheimer’s disease. Front Neurosci. 2021;15:662242. doi: 10.3389/fnins.2021.662242
- Batista AF, Khan KA, Papavergi MT, Lemere CA. The importance of complement-mediated immune signaling in Alzheimer’s disease pathogenesis. Int J Mol Sci. 2024;25(2):817. doi: 10.3390/ijms25020817
- Heneka MT, Van Der Flier WM, Jessen F, et al. Neuroinflammation in Alzheimer disease. Nat Rev Immunol. 2024;25(5):321-352. doi: 10.1038/s41577-024-01104-7
- Israelov H, Ravid O, Atrakchi D, et al. Caspase-1 has a critical role in blood-brain barrier injury and its inhibition contributes to multifaceted repair. J Neuroinflammation. 2020;17(1):267. doi: 10.1186/s12974-020-01927-w
- Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-brain barrier dysfunction amplifies the development of neuroinflammation: Understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front Cell Neurosci. 2021;15:661838. doi: 10.3389/fncel.2021.661838
- Singh N, Bhalla M, De Jager P, Gilca M. An overview on ashwagandha: A rasayana (rejuvenator) of ayurveda. Afr J Tradit Complement Altern Med. 2011;8(5S):208-213. doi: 10.4314/ajtcam.v8I5S.9
- Mikulska P, Malinowska M, Ignacyk M, et al. Ashwagandha (Withania somnifera)-current research on the health-promoting activities: A narrative review. Pharmaceutics. 2023;15(4):1057. doi: 10.3390/pharmaceutics15041057
- Dubey S, Kallubai M, Subramanyam R. Improving the inhibition of β-amyloid aggregation by withanolide and withanoside derivatives. Int J Biol Macromol. 2021;173:56-65. doi: 10.1016/j.ijbiomac.2021.01.094
- Gladen-Kolarsky N, Monestime O, Bollen M, et al. Withania somnifera (ashwagandha) improves spatial memory, anxiety and depressive-like behavior in the 5xFAD mouse model of Alzheimer’s disease. Antioxidants (Basel). 2024;13(10):1164. doi: 10.3390/antiox13101164
- Xing D, Yoo C, Gonzalez D, et al. Effects of acute Ashwagandha ingestion on cognitive function. Int J Environ Res Public Heal. 2022;19(19):11852. doi: 10.3390/ijerph191911852
- Rao PPN, Mohamed T, Teckwani K, Tin G. Curcumin binding to beta amyloid: A computational study. Chem Biol Drug Des. 2015;86(4):813-820. doi: 10.1111/cbdd.12552
- Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res. 2004;75(6):742-750. doi: 10.1002/jnr.20025
- Shao S, Ye X, Su W, Wang Y. Curcumin alleviates Alzheimer’s disease by inhibiting inflammatory response, oxidative stress and activating the AMPK pathway. J Chem Neuroanat. 2023;134:102363. doi: 10.1016/j.jchemneu.2023.102363
- Ma QL, Zuo X, Yang F, et al. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J Biol Chem. 2012;288(6):4056-4065. doi: 10.1074/jbc.m112.393751
- Rodrigues B, Ventura E, Moreira P, et al. New low-dose curcumin derivative with therapeutic potential in Alzheimer’s disease: Results from an in vitro and in vivo study in mice. Neurobiol Aging. 2025;147:105-123. doi: 10.1016/j.neurobiolaging.2024.12.005
- Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol. 2010;127(1):26-31. doi: 10.1016/j.jep.2009.09.056
- Malishev R, Shaham-Niv S, Nandi S, Kolusheva S, Gazit E, Jelinek R. Bacoside-A, an Indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions. ACS Chem Neurosci. 2017;8(4):884-891. doi: 10.1021/acschemneuro.6b00438
- Li Y, Yuan X, Shen Y, et al. Bacopaside I ameliorates cognitive impairment in APP/PS1 mice via immune-mediated clearance of β-amyloid. Aging (Albany NY). 2016;8(3):521-523. doi: 10.18632/aging.100913
- Prabhakar S, Vishnu VY, Modi M, et al. Efficacy of bacopa monnieri (Brahmi) and Donepezil in Alzheimer’s disease and mild cognitive impairment: A randomized double-blind parallel phase 2b study. Ann Indian Acad Neurol. 2020;23(6):767-773. doi: 10.4103/aian.aian_610_19
- Rezai-Zadeh K, Shytle D, Sun N, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci. 2005;25(38):8807-8814. doi: 10.1523/jneurosci.1521-05.2005
- Du K, Liu M, Zhong X, et al. Epigallocatechin gallate reduces amyloid β-induced neurotoxicity via inhibiting endoplasmic reticulum stress-mediated apoptosis. Mol Nutr Food Res. 2018;62(8):E1700890. doi: 10.1002/mnfr.201700890
- Nan S, Wang P, Zhang Y, Fan J. Epigallocatechin-3-gallate provides protection against Alzheimer’s disease-induced learning and memory impairments in rats. Drug Des Devel Ther. 2021;15:2013-2024. doi: 10.2147/dddt.s289473
- Mishra G, Awasthi R, Mishra SK, et al. Development of epigallocatechin and ascorbic acid dual delivery transferosomes for managing Alzheimer’s disease: In vitro and in vivo studies. ACS Omega. 2024;9(33):35463. doi: 10.1021/acsomega.4c02140
- Porquet D, Casadesús G, Bayod S, et al. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Omaha). 2012;35(5):1851-1865. doi: 10.1007/S11357-012-9489-4
- Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383-1391. doi: 10.1212/wnl.0000000000002035
- Regitz C, Fitzenberger E, Mahn FL, Dußling LM, Wenzel U. Resveratrol reduces amyloid-beta (Aβ₁₋₄₂)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur J Nutr. 2016;55(2):741-747. doi: 10.1007/s00394-015-0894-1
- Chen Y, Shi GW, Liang ZM, et al. Resveratrol improves cognition and decreases amyloid plaque formation in Tg6799 mice. Mol Med Rep. 2019;49(5):3783-3790. doi: 10.3892/mmr.2019.10010
- Capiralla H, Vingtdeux V, Zhao H, et al. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem. 2012;120(3):461-472. doi: 10.1111/J.1471-4159.2011.07594.x
- Cornejo A, Aguilar Sandoval F, Caballero L, et al. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J Enzyme Inhib Med Chem. 2017;32(1):945-953. doi: 10.1080/14756366.2017.1347783
- Rong H, Liang Y, Niu Y. Rosmarinic acid attenuates β-amyloid-induced oxidative stress via Akt/GSK-3β/Fyn-mediated Nrf2 activation in PC12 cells. Free Radic Biol Med. 2018;120:114-123. doi: 10.1016/j.freeradbiomed.2018.03.028
- Hase T, Shishido S, Yamamoto S, et al. Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci Rep. 2019;9(1):8711. doi: 10.1038/s41598-019-45168-1
- Yamamoto S, Kayama T, Noguchi-Shinohara M, et al. Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway. NPJ Sci Food. 2021;5(1):1-11. doi: 10.1038/s41538-021-00084-5
- Shin M, Liu QF, Choi B, et al. Neuroprotective effects of limonene (+) against Aβ42-induced neurotoxicity in a Drosophila model of Alzheimer’s disease. Biol Pharm Bull. 2020;43(3):409-417. doi: 10.1248/bpb.b19-00495
- Piccialli I, Tedeschi V, Caputo L, et al. The antioxidant activity of limonene counteracts neurotoxicity triggered byAβ1-42 oligomers in primary cortical neurons. Antioxidants (Basel). 2021;10(6):937. doi: 10.3390/antiox10060937
- Bigdeli Y, Asle-Rousta M, Rahnema M. Effects of limonene on chronic restraint stress-induced memory impairment and anxiety in male rats. Neurophysiology. 2019;51(2):107-113. doi: 10.1007/s11062-019-09800-0
- Sul D, Kim HS, Lee D, Joo SS, Hwang KW, Park SY. Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci. 2009;84(9-10):257-262. doi: 10.1016/j.lfs.2008.12.001
- Kim JH, Wang Q, Choi JM, Lee S, Cho EJ. Protective role of caffeic acid in an Aβ25-35-induced Alzheimer’s disease model. Nutr Res Pract. 2015;9(5):480-488. doi: 10.4162/nrp.2015.9.5.480
- Hu Y, Cui J, Sun J, et al. A novel biomimetic nanovesicle containing caffeic acid-coupled carbon quantum dots for the treatment of Alzheimer’s disease via nasal administration. J Nanobiotechnology. 2024;22(1):642. doi: 10.1186/S12951-024-02912-8
- Yu L, Wang W, Pang W, Xiao Z, Jiang Y, Hong Y. Dietary lycopene supplementation improves cognitive performances in tau transgenic mice expressing P301L mutation via inhibiting oxidative stress and tau hyperphosphorylation. J Alzheimers Dis. 2017;57(2):475-482. doi: 10.3233/jad-161216
- Liu C Bin, Wang R, Yi YF, Gao Z, Chen YZ. Lycopene mitigates β-amyloid induced inflammatory response and inhibits NF-κB signaling at the choroid plexus in early stages of Alzheimer’s disease rats. J Nutr Biochem. 2018;53:66-71. doi: 10.1016/j.jnutbio.2017.10.014
- Guo Y, Fan Z, Zhao S, et al. Brain-targeted lycopene-loaded microemulsion modulates neuroinflammation, oxidative stress, apoptosis and synaptic plasticity in β-amyloid-induced Alzheimer’s disease mice. Neurol Res. 2023;45(8):753-764. doi: 10.1080/01616412.2023.2203615
- Hwang S, Lim JW, Kim H. Inhibitory effect of lycopene on amyloid-β-induced apoptosis in neuronal cells. Nutrients. 2017;9(8):883. doi: 10.3390/nu9080883
- Le XT, Nguyen HT, Van Nguyen T, et al. Ocimum sanctum Linn. Extract improves cognitive deficits in olfactory bulbectomized mice via the enhancement of central cholinergic systems and VEGF expression. Evid Based Complement Alternat Med. 2021;2021:6627648. doi: 10.1155/2021/6627648
- Hening P, Mataram MBA, Wijayanti N, Kusindarta DL, Wihadmadyatami H. The neuroprotective effect of Ocimum sanctum Linn. ethanolic extract on human embryonic kidney-293 cells as in vitro model of neurodegenerative disease. Vet World. 2018;11(9):1237-1243. doi: 10.14202/vetworld.2018.1237-1243
- Aliffia D, Ramadhani DA, Wasityastuti W, et al. Ocimum sanctum leaves prevent neuronal cell apoptosis through reduction of caspase-3 and -9 expressions and inhibition of β-amyloid oligomerization. Indones Biomed J. 2023;15(4):322-332. doi: 10.18585/inabj.v15I4.2415
- Quan Q, Ma X, Li M, Li X, Yuan H. Ginsenoside Rg1 promotes βamyloid peptide degradation through inhibition of the ERK/PPARγ phosphorylation pathway in an Alzheimer’s disease neuronal model. Exp Ther Med. 2024;27(1):31. doi: 10.3892/emt.2023.12319
- Ren Z, Yang H, Zhu C, Deng J, Fan D. Ginsenoside Rh4 alleviates amyloid β plaque and tau hyperphosphorylation by regulating neuroinflammation and the glycogen synthase kinase 3β signaling pathway. J Agric Food Chem. 2023;71(37):13783-13794. doi: 10.1021/acs.jafc.3c02550
- Niu H, Zhang M, Zhang K, Aishan S, Li H, Wu W. In-depth investigation on potential mechanism of forest-grown ginseng alleviating Alzheimer’s disease via UHPLC-MS-based metabolomics. Metab. 2025;15(2):93. doi: 10.3390/metabo15020093
- Jiang X, Chen S, Wang F, Song D, Zhang H, Zhang Z. Asiaticoside improves spatial learning and memory abilities of Alzheimer’s disease rat model by promoting the expression of PPAγ and inhibiting inflammatory factors. Biomed Res. 2018;29(5):918-922. doi: 10.4066/biomedicalresearch.29-17-2073
- Hossain S, Hashimoto M, Katakura M, Al Mamun A, Shido O. Medicinal value of asiaticoside for Alzheimer’s disease as assessed using single-molecule-detection fluorescence correlation spectroscopy, laser-scanning microscopy, transmission electron microscopy, and in silico docking. BMC Complement Altern Med. 2015;15(1):118. doi: 10.1186/S12906-015-0620-9
- Zhang Z, Li X, Li D, et al. Asiaticoside ameliorates β-amyloid-induced learning and memory deficits in rats by inhibiting mitochondrial apoptosis and reducing inflammatory factors. Exp Ther Med. 2017;13(2):413-420. doi: 10.3892/etm.2016.4004
- Do J, Kim N, Jeon SH, et al. Trans-cinnamaldehyde alleviates amyloid-beta pathogenesis via the SIRT1-PGC1α- PPARγ pathway in 5XFAD transgenic mice. Int J Mol Sci. 2020;21(12):4492. doi: 10.3390/ijms21124492
- Bagheri-Mohammadi S, Askari S, Alani B, Moosavi M, Ghasemi R. Cinnamaldehyde regulates insulin and caspase-3 signaling pathways in the sporadic Alzheimer’s disease model: Involvement of hippocampal function via IRS-1, Akt, and GSK-3β phosphorylation. J Mol Neurosci. 2022;72(11):2273-2291. doi: 10.1007/S12031-022-02075-x
- Shao L, Dong C, Geng D, He Q, Shi Y. Ginkgolide B protects against cognitive impairment in senescence-accelerated P8 mice by mitigating oxidative stress, inflammation and ferroptosis. Biochem Biophys Res Commun. 2021;572:7-14. doi: 10.1016/j.bbrc.2021.07.081
- Liu GZ, Niu TT, Yu Q, et al. Ginkgolide attenuates memory impairment and neuroinflammation by suppressing the NLRP3/caspase-1 pathway in Alzheimer’s disease. Aging (Albany NY). 2023;15(19):10237-10252. doi: 10.18632/aging.205072
- Zahedi E, Naseri FM, Zamani E, et al. Ginger extract improves cognitive dysfunction via modulation of gut microbiota-derived short-chain fatty acids in D-galactose/ ovariectomy-induced Alzheimer-like disease. Mol Neurobiol. 2025;62(4):5095-5108. doi: 10.1007/S12035-024-04583-w
- Zeng GF, Zong SH, Zhang ZY, et al. The role of 6-gingerol on inhibiting amyloid β protein-induced apoptosis in PC12 cells. Rejuvenation Res. 2015;18(5):413-421. doi: 10.1089/rej.2014.1657
- Pan Y, Li Z, Zhao X, et al. Screening of active substances regulating Alzheimer’s disease in ginger and visualization of the effectiveness on 6-gingerol pathway targets. Foods. 2024;13(4):612. doi: 10.3390/foods13040612/S1
- Bhattacharya R, Saini S, Ghosh S, et al. Organosulfurs, S-allyl cysteine and N-acetyl cysteine sequester di-carbonyls and reduces carbonyl stress in HT22 cells. Sci Rep. 2023;13(1):13071. doi: 10.1038/S41598-023-40291-6
- Ito Y, Kosuge Y, Sakikubo T, et al. Protective effect of S-allyl-l-cysteine, a garlic compound, on amyloid β-protein-induced cell death in nerve growth factor-differentiated PC12 cells. Neurosci Res. 2003;46(1):119-125. doi: 10.1016/S0168-0102(03)00037-3
- Gorantla NV, Das R, Mulani FA, Thulasiram HV, Chinnathambi S. Neem derivatives inhibits tau aggregation. J Alzheimers Dis Rep. 2019;3(1):169-178. doi: 10.3233/adr-190118
- Khan A, Khan A, Singh D, et al. Analysis of inhibition potential of nimbin and its analogs against NF-κB subunits p50 and p65: A molecular docking and molecular dynamics study. Anticancer Agents Med Chem. 2024;24(4):280-287. doi: 10.2174/1871520623666230908101204
