Cardiac adverse events post-vaccination

Some vaccine recipients experience cardiac adverse events (AEs) following immunization (AEFIs), which include background events and vaccine-associated AEs for certain vaccines. A small subset of AEs experienced by vaccine recipients is documented in the United States Vaccine AE Reporting System (VAERS). This study retrospectively analyzed VAERS to identify associations for cardiac AEFIs. The analysis considered factors such as vaccine type, vaccine source, vaccine recipient gender, and infant age. Multiple patterns of cardiac AEFI associations were detected: (i) bradycardia and cardiac arrest for infants under 1 year of age, (ii) arrhythmia for COVID-19 and human papillomavirus vaccines, (iii) atrial fibrillation for COVID-19, influenza, and respiratory syncytial virus vaccines, (iv) myocarditis and pericarditis for anthrax, COVID-19, smallpox, and typhoid vaccines, and (v) chest discomfort, chest pain, palpitations, and tachycardia for multiple vaccines. Gender differences were observed for both myocarditis and palpitation AEFIs. Significant differences in bradycardia and cardiac arrest AEFI normalized frequencies were observed for the same infant vaccines from different manufacturers, suggesting possible manufacturing contaminants as potential causative components. In conclusion, delaying specific vaccines until infants are 1 year old, selecting alternative vaccine options, or reducing or eliminating causative components could reduce infant bradycardia and cardiac arrest AEFIs. Mathematical age relationships could model both male and female myocarditis AEs for COVID-19 vaccines, potentially applicable to other vaccines, suggesting shared etiologies. In addition, several vaccines were associated with correlated cardiac AEFI signals for chest discomfort, chest pain, palpitations, and tachycardia. The etiologies of these AEFIs could be attributed to elevated histamine levels.

- Vaccine Adverse Event Reporting System. Available from: https://vaers.hhs.gov/data.html [Last accssed on 2024 Jul 10].
- Cassimatis DC, Atwood JE, Engler RM, Linz PE, Grabenstein JD, Vernalis MN. Smallpox vaccination and myopericarditis: A clinical review. J Am Coll Cardiol. 2004;43(9):1503-1510. doi: 10.1016/j.jacc.2003.11.053
- Mittermayer C. Lethal complications of typhoid-cholera-vaccination (case report and review of the literature). Beitr Pathol. 1976;158(2):212-224. doi: 10.1016/S0005-8165(76)80197-7
- Lee S, Jo H, Lee H, et al. Global estimates on the reports of vaccine-associated myocarditis and pericarditis from 1969 to 2023: Findings with critical reanalysis from the WHO pharmacovigilance database. J Med Virol. 2024;96(6):e29693. doi: 10.1002/jmv.29693
- Ho JSY, Sia CH, Ngiam JN, et al. A review of COVID-19 vaccination and the reported cardiac manifestations. Singapore Med J. 2023;64(9):543-549. doi: 10.11622/smedj.2021210
- Sangpornsuk N, Rungpradubvong V, Tokavanich N, et al. Arrhythmias after SARS-CoV-2 vaccination in patients with a cardiac implantable electronic device: A multicenter study. Biomedicines. 2022;10(11):2838. doi: 10.3390/biomedicines10112838
- Chiu SN, Chen YS, Hsu CC, et al. Changes of ECG parameters after BNT162b2 vaccine in the senior high school students. Eur J Pediatr. 2023;182(3):1155-1162. doi: 10.1007/s00431-022-04786-0
- Stowe J, Whitaker HJ, Andrews NJ, Miller E. Risk of cardiac arrhythmia and cardiac arrest after primary and booster COVID-19 vaccination in England: A self-controlled case series analysis. Vaccine X. 2023;15:100418. doi: 10.1016/j.jvacx.2023.100418
- Chen CY, Hsieh MT, Wei CT, Lin CW. Atrial fibrillation after mRNA-1273 SARS-CoV-2 vaccination: Case report with literature review. Risk Manag Healthc Policy. 2023;16:209-214. doi: 10.2147/RMHP.S402007
- Ford GA, Hargroves D, Lowe D, et al. Targeted atrial fibrillation detection in COVID-19 vaccination clinics. Eur Heart J Qual Care Clin Outcomes. 2021;7(6):526-528. doi: 10.1093/ehjqcco/qcab061
- Ruggiero R, Donniacuo M, Mascolo A, et al. COVID-19 vaccines and atrial fibrillation: Analysis of the post-marketing pharmacovigilance European database. Biomedicines. 2023;11(6):1584. doi: 10.3390/biomedicines11061584
- Liao YF, Tseng WC, Wang JK, et al. Management of cardiovascular symptoms after Pfizer-BioNTech COVID-19 vaccine in teenagers in the emergency department. J Formos Med Assoc. 2023;122(8):699-706. doi: 10.1016/j.jfma.2022.12.004
- Park CH, Yang J, Lee HS, Kim TH, Eun LY. Characteristics of teenagers presenting with chest pain after COVID-19 mRNA vaccination. J Clin Med. 2023;12(13):4421. doi: 10.3390/jcm12134421
- Kewan T, Flores M, Mushtaq K, et al. Characteristics and outcomes of adverse events after COVID-19 vaccination. J Am Coll Emerg Physicians Open. 2021;2(5):e12565. doi: 10.1002/emp2.12565
- Mansanguan S, Charunwatthana P, Piyaphanee W, Dechkhajorn W, Poolcharoen A, Mansanguan C. Cardiovascular manifestation of the BNT162b2 mRNA COVID-19 vaccine in adolescents. Trop Med Infect Dis. 2022;7(8):196. doi: 10.3390/tropicalmed7080196
- Ba CF, Chen BH, Shao LS, et al. CMR manifestations, influencing factors and molecular mechanism of myocarditis induced by COVID-19 mrna vaccine. RCM. 2022;23(10):339. doi: 10.31083/j.rcm2310339
- Cushion S, Arboleda V, Hasanain Y, Demory Beckler M, Hardigan P, Kesselman MM. Comorbidities and symptomatology of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)-related myocarditis and SARS-CoV-2 vaccine-related myocarditis: A review. Cureus. 2022;14(4):e24084. doi: 10.7759/cureus.24084
- Goyal M, Ray I, Mascarenhas D, Kunal S, Sachdeva RA, Ish P. Myocarditis post-SARS-CoV-2 vaccination: A systematic review. QJM. 2023;116(1):7-25. doi: 10.1093/qjmed/hcac064
- Botham SJ, Isaacs D, Henderson-Smart DJ. Incidence of apnoea and bradycardia in preterm infants following DTPw and Hib immunization: A prospective study. J Paediatr Child Health. 1997;33(5):418-421. doi: 10.1111/j.1440-1754.1997.tb01632.x
- Sen S, Cloete Y, Hassan K, Buss P. Adverse events following vaccination in premature infants. Acta Paediatr. 2001;90(8):916-920. doi: 10.1111/j.1651-2227.2001.tb02457.x
- Lee J, Robinson JL, Spady DW. Frequency of apnea, bradycardia, and desaturations following first diphtheria-tetanus-pertussis-inactivated polio-Haemophilus influenzae type B immunization in hospitalized preterm infants. BMC Pediatr. 2006;6(1):20. doi: 10.1186/1471-2431-6-20
- Slack MH, Schapira C, Thwaites RJ, Andrews N, Schapira D. Acellular pertussis and meningococcal C vaccines: Cardio-respiratory events in preterm infants. Eur J Pediatr. 2003;162(6):436-437. doi: 10.1007/s00431-003-1159-1
- DeMeo SD, Raman SR, Hornik CP, Wilson CC, Clark R, Smith PB. Adverse events after routine immunization of extremely low-birth-weight infants. JAMA Pediatr. 2015;169(8):740-745. doi: 10.1001/jamapediatrics.2015.0418
- Knuf M, Charkaluk ML, The Nguyen PN, et al. Penta-and hexavalent vaccination of extremely and very-to-moderate preterm infants born at less than 34 weeks and/ or under 1500 g: A systematic literature review. Hum Vaccin Immunother. 2023;19(1):2191575. doi: 10.1080/21645515.2023.2191575
- MedDRA. Medical Dictionary for Regulatory Archives. Available from: https://www.meddra.org [Last accessed on 2024 Jul 01].
- Ricke DO. VAERS-Tools. Available from: https://github. com/doricke/vaers-tools [Last accessed on 2024 Jul 01].
- Social Science Statistics. Chi Square Calculator for 2x2. Social Science Statistics. Available from: https://www. socscistatistics.com/tests/chisquare [Last accessed on 2024 Jul 01].
- Dahan S, Segal Y, Dagan A, Shoenfeld Y, Eldar M. Cardiac arrest following HPV vaccination. Clin Res Trials. 2019;5:1-7. doi: 10.15761/CRT.1000279
- Afrin LB, Dempsey TT, Weinstock LB. Post-HPV-vaccination mast cell activation syndrome: Possible vaccine-triggered escalation of undiagnosed pre-existing mast cell disease? Vaccines (Basel). 2022;10(1):127. doi: 10.3390/vaccines10010127
- Yonker LM, Swank Z, Bartsch YC, et al. Circulating spike protein detected in post-COVID-19 mRNA vaccine myocarditis. Circulation. 2023;147(11):867-876. doi: 10.1161/CIRCULATIONAHA.122.061025
- Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation. 2021;144(6):471-484. doi: 10.1161/CIRCULATIONAHA.121.056135
- Alami A, Villeneuve PJ, Farrell PJ, et al. Myocarditis and pericarditis post-mRNA COVID-19 vaccination: Insights from a pharmacovigilance perspective. J Clin Med. 2023;12(15):4971. doi: 10.3390/jcm12154971
- Levick SP, Meléndez GC, Plante E, McLarty JL, Brower GL, Janicki JS. Cardiac mast cells: The centrepiece in adverse myocardial remodelling. Cardiovasc Res. 2011; 89(1):12-19. doi: 10.1093/cvr/cvq272
- FDA. JYNNEOS FDA Package Insert. Available from: https:// www.fda.gov/media/131078/download [Last accessed on 2024 Aug 28].
- Virzì GM, Clementi A, Brocca A, Ronco C. Endotoxin effects on cardiac and renal functions and cardiorenal syndromes. Blood Purif. 2017;44(4):314-326. doi: 10.1159/000480424
- Suffredini Anthony F, Fromm Robert E, Parker Margaret M, et al. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med. 1989;321(5):280-287. doi: 10.1056/NEJM198908033210503
- Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2021;78(4):1233-1261. doi: 10.1007/s00018-020-03656-y
- Dale HH, Laidlaw PP. The physiological action of β-iminazolylethylamine. J Physiol. 1910;41(5):318-344. doi: 10.1113/jphysiol.1910.sp001406
- Wolff AA, Levi R. Histamine and cardiac arrhythmias. Circ Res. 1986;58(1):1-16. doi: 10.1161/01.RES.58.1.1
- Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85(5):1185-1196. doi: 10.1093/ajcn/85.5.1185
- Fremont-Smith M, Gherlone N, Smith N, Tisdall P, Ricke DO. Models for COVID-19 early cardiac pathology following SARS-CoV-2 infection. Int J Infect Dis. 2021;113:331-335. doi: 10.1016/j.ijid.2021.09.052
- Vikenes K, Farstad M, Nordrehaug JE. Serotonin is associated with coronary artery disease and cardiac events. Circulation. 1999;100(5):483-489. doi: 10.1161/01.CIR.100.5.483
- Golino P, Piscione F, Willerson JT, et al. Divergent effects of serotonin on coronary-artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. N Engl J Med. 1991;324(10):641-648. doi: 10.1056/NEJM199103073241001
- Avolio E, Carrabba M, Milligan R, et al. The SARS-CoV-2 Spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling: A potential non-infective mechanism of COVID-19 microvascular disease. Clin Sci (Lond). 2021;135(24):2667-2689. doi: 10.1042/CS20210735
- Tsilioni I, Theoharides TC. Recombinant SARS-CoV-2 spike protein stimulates secretion of chymase, tryptase, and IL-1β from human mast cells, augmented by IL-33. Int J Mol Sci. 2023;24(11):9487. doi: 10.3390/ijms24119487
- Robles JP, Zamora M, Adan-Castro E, Siqueiros-Marquez L, Martinez de la Escalera G, Clapp C. The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling. J Biol Chem. 2022;298(3):101695. doi: 10.1016/j.jbc.2022.101695
- Ricke DO. Epilepsy adverse events post vaccination. Explor Neurosci. 2024;3(1):508-519. doi: 10.37349/en.2024.00061
- Daley MF, Reifler LM, Glanz JM, et al. Association between aluminum exposure from vaccines before age 24 months and persistent asthma at age 24 to 59 months. Acad Pediatr. 2023;23(1):37-46. doi: 10.1016/j.acap.2022.08.006
- Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem. 2011;105(11):1489-1499. doi: 10.1016/j.jinorgbio.2011.08.008
- Vaccine Excipient Summary. Available from: https:// c anv a x . c a / s i t e s / d e f aul t / f i l e s / 2 0 2 0 - 0 3 / uscdc_ vaccineexcipientsummary_2020.pdf [Last accessed on 2024 Jul 10].
- Shoenfeld Y, Agmon-Levin N. ‘ASIA’-Autoimmune/ inflammatory syndrome induced by adjuvants. J Autoimmun. 2011;36(1):4-8. doi: 10.1016/j.jaut.2010.07.003
- Ricke DO. Two different antibody-dependent enhancement (ADE) risks for SARS-CoV-2 antibodies. Front Immunol. 2021;12:443. doi: 10.3389/fimmu.2021.640093