AccScience Publishing / BH / Online First / DOI: 10.36922/bh.4521
PERSPECTIVE ARTICLE

The future of cardiac care: How stem cells are revolutionizing cardiovascular disease treatment

Aliki Iliadou1* Panteleimon Pantelidis2 Athina Goliopoulou2 Ioannis Gialamas2 Georgios E. Zakynthinos2 Georgios Paparoidamis3 Evangelos Oikonomou2 Georgios Koliakos1
Show Less
1 Laboratory of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
2 3rd University Department of Cardiology, Chest Disease Hospital “Sotiria”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
3 3rd University Department of Orthopaedics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
Submitted: 14 August 2024 | Accepted: 29 October 2024 | Published: 20 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cardiovascular diseases (CVDs) are a major global health issue, with current treatments often insufficient for addressing long-term cardiac damage. Stem cell therapy provides a promising alternative by potentially repairing damaged heart tissue and improving cardiac function. This review highlights recent advancements in stem cell applications for CVDs, focusing on heart tissue regeneration using various cell types, including mesenchymal stem cells and the newly discovered very small embryonic-like stem cells. Each cell type has unique characteristics that contribute to heart regeneration. Combining these cells with appropriate natural, synthetic, or decellularized scaffolds creates environments that better mimic the heart, resulting in improved outcomes. The clustered regularly interspaced short palindromic repeat/Cas9 gene editing technology advances these efforts by enabling precise genetic modifications. Despite these advancements, challenges such as cell culture variability, biomaterial selection, and clinical protocol standardization remain. Continued research and clinical trials are crucial to overcome these challenges and integrate stem cell therapies into standard cardiac care.

Keywords
Cardiac tissue engineering
Heart tissue regeneration
Stem cells
Very small embryonic-like stem cells
Stem cell therapy
Cardiac function
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Muharram FR, Multazam CE, Mustofa A, et al. The 30 years of shifting in the Indonesian cardiovascular burden-analysis of the global burden of disease study. J Epidemiol Glob Health. 2024;14(1):193-212. doi: 10.1007/s44197-024-00187-8

 

  1. Heng BC, Haider HK, Sim EK, Cao T, Ng SC. Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc Res. 2004;62(1):34-42. doi: 10.1016/j.cardiores.2003.12.022

 

  1. Bottle A, Faitna P, Aylin PP, Cowie MR. Five-year outcomes following left ventricular assist device implantation in England. Open Heart. 2021;8(1):e001658.doi: 10.1136/openhrt-2021-001658

 

  1. Zhang Y, Mignone J, MacLellan WR. Cardiac regeneration and stem cells. Physiol Rev. 2015;95(4):1189-1204. doi: 10.1152/physrev.00021.2014

 

  1. Yoshida Y, Yamanaka S. Induced pluripotent stem cells 10 years later: For cardiac applications. Circ Res. 2017;120(12):1958-1968. doi: 10.1016/j.ijsu.2013.05.037

 

  1. Escribá R, Larrañaga-Moreira JM, Richaud-Patin Y, et al. iPSC-based modeling of variable clinical presentation in hypertrophic cardiomyopathy. Circ Res. 2023;133(2):108-119. doi: 10.1161/CIRCRESAHA.122.321951

 

  1. Bryl R, Kulus M, Bryja A, et al. Cardiac progenitor cell therapy: Mechanisms of action. Cell Biosci. 2024;14:30. doi: 10.1186/s13578-024-01211-x

 

  1. Natsumeda M, Suncion V, Balkan W, Hare J. The impact of intramyocardial mesenchymal stem cell injection according to scar size for the treatment of ischemic cardiomyopathy. J Am Coll Cardiol. 2016;67(13 Supplement):158-158. doi: 10.1016/S0735-1097(16)30159-0

 

  1. Bartunek J, Wojakowski W. Intracoronary autologous bone marrow cell transfer after acute myocardial infarction: Abort and refocus. Eur Heart J. 2017;38(39):2944-2947. doi: 10.1093/eurheartj/ehx300

 

  1. Povsic TJ. Emerging therapies for congestive heart failure. Clin Pharmacol Ther. 2018;103(1):77-87. doi: 10.1002/cpt.913

 

  1. Correia CD, Ferreira A, Fernandes MT, et al. Human stem cells for cardiac disease modeling and preclinical and clinical applications-are we on the road to success? Cells. 2023;12(13):1727. doi: 10.3390/cells12131727

 

  1. Clinical Trials, National Library of Medicine (National Center for Biotechnology Information. Available from: https://clinicaltrials.gov [Last accessed on 2024 Oct 17].

 

  1. Ratajczak MZ, Ratajczak J, Kucia M. Very small embryonic-like stem cells (VSELs) – an update and future directions. Circ Res. 2019;124(2):208-210. doi: 10.1161/CIRCRESAHA.118.314287

 

  1. Gounari E, Daniilidis A, Tsagias N, et al. Isolation of a novel embryonic stem cell cord blood–derived population with in vitro hematopoietic capacity in the presence of Wharton’s jelly-derived mesenchymal stromal cells. Cytotherapy. 2019;21(2):246-259. doi: 10.1016/j.jcyt.2018.11.006

 

  1. Sedláková V, Mourcos S, Pupkaitė J, et al. Biomaterials for direct cardiac repair-A rapid scoping review 2012-2022. Acta Biomater. 2024;180:61-81. doi: 10.1016/j.actbio.2024.04.008

 

  1. Liu W, Zhang X, Jiang X, et al. Decellularized extracellular matrix materials for treatment of ischemic cardiomyopathy. Bioact Mater. 2024;33:460-482. doi: 10.1016/j.bioactmat.2023.10.015

 

  1. Prat-Vidal C, Rodríguez-Gómez L, Aylagas M, et al. First-in-human PeriCord cardiac bioimplant: Scalability and GMP manufacturing of an allogeneic engineered tissue graft. EBioMedicine. 2020;54:102729. doi: 10.1016/j.ebiom.2020.102729

 

  1. Sun X, Wu J, Qiang B, et al. Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte engraftment and cardiac function after infarction in rats. Sci Transl Med. 2020;12(562):eaax2992. doi: 10.1126/scitranslmed.aax2992

 

  1. Saeed S, Khan SU, Khan WU, et al. Genome editing technology: A new frontier for the treatment and prevention of cardiovascular diseases. Curr Probl Cardiol. 2023;48(7):101692. doi: 10.1016/j.cpcardiol.2023.101692

 

  1. Schary Y, Rotem I, Caller T, et al. CRISPR-Cas9 editing of TLR4 to improve the outcome of cardiac cell therapy. Sci Rep. 2023;13(1):4481. doi: 10.1038/s41598-023-31286-4

 

  1. Bao X, Liang Y, Chang H, et al. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): From bench to bedside. Signal Transduct Target Ther. 2024;9(1):13. doi: 10.1038/s41392-023-01690-3

 

  1. Bakinowska E, Kiełbowski K, Boboryko D, et al. The role of stem cells in the treatment of cardiovascular diseases. Int J Mol Sci. 2024;25(7):3901. doi: 10.3390/ijms25073901

 

  1. Chamuleau SA, van Belle E, Doevendans PA. Enhancing cardiac stem cell differentiation into cardiomyocytes. Cardiovasc Res. 2009;82(3):385-387. doi: 10.1093/cvr/cvp114

 

  1. Wu R, Hu X, Wang J. Concise review: Optimized strategies for stem cell-based therapy in myocardial repair: Clinical translatability and potential limitation. Stem Cells. 2018;36(4):482-500. doi: 10.1002/stem.2778

 

  1. Olatunji G, Kokori E, Yusuf I, et al. Stem cell-based therapies for heart failure management: A narrative review of current evidence and future perspectives. Heart Fail Rev. 2024;29(3):573-598. doi: 10.1007/s10741-023-10351-0

 

  1. Liu C, Han D, Liang P, et al. The current dilemma and breakthrough of stem cell therapy in ischemic heart disease. Front Cell Dev Biol. 2021;9:636136. doi: 10.3389/fcell.2021.636136

 

  1. Szaraz P, Gratch YS, Iqbal F, Librach CL. In vitro differentiation of human mesenchymal stem cells into functional cardiomyocyte-like cells. J Vis Exp. 2017;126:55757. doi: 10.3791/55757

 

  1. Farahzadi R, Fathi E, Valipour B, Ghaffary S. Stem cells-derived exosomes as cardiac regenerative agents. Int J Cardiol Heart Vasc. 2024;52:101399. doi: 10.1016/j.ijcha.2024.101399

 

  1. Afzal J, Liu Y, Du W, et al. Cardiac ultrastructure inspired matrix induces advanced metabolic and functional maturation of differentiated human cardiomyocytes. Cell Rep. 2022;40(4):111146. doi: 10.1016/j.celrep.2022.111146

 

  1. Ottaviani D, ter Huurne M, Elliott DA, Bellin M, Mummery CL. Maturing differentiated human pluripotent stem cells in vitro: Methods and challenges. Development. 2023;150(11):dev201103. doi: 10.1242/dev.201103

 

  1. Lovell-Badge R, Anthony E, Barker RA, et al. ISSCR Guidelines for stem cell research and clinical translation: The 2021 update. Stem Cell Reports. 2021;16(6):1398-1408. doi: 10.1016/j.stemcr.2021.05.012

 

  1. Rojewski MT, Fekete N, Baila S, et al. GMP-Compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system. Cell Transplant. 2013;22(11):1981-2000. doi: 10.3727/096368912X657990

 

  1. Codinach M, Blanco M, Ortega I, et al. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow–derived multipotent mesenchymal stromal cells. Cytotherapy. 2016;18(9):1197-1208. doi: 10.1016/j.jcyt.2016.05.012
Share
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing