AccScience Publishing / BH / Online First / DOI: 10.36922/bh.2257
Cite this article
111
Download
1305
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Hypochloremia in heart failure: A new prognostic and therapeutic aspect of refractory heart failure

Shafaat Raza1* Shahzeen Allah Ditto2
Show Less
1 Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Sindh, Pakistan
2 Department of Nephrology, Liaquat University of Medical and Health Sciences, Jamshoro, Sindh, Pakistan
Brain & Heart 2024, 2(1), 2257 https://doi.org/10.36922/bh.2257
Submitted: 15 November 2023 | Accepted: 12 January 2024 | Published: 15 February 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Heart failure (HF) is one of the most common cardiovascular diseases, bearing a significant burden of morbidity, mortality, and disability. Low serum chloride (Cl) levels have been observed to play an important role in predicting mortality and planning management strategies for HF. This review aims to investigate the influence of hypochloremia on individuals suffering from HF and its correlation with various underlying pathophysiological mechanisms. We conducted a literature review of articles published in the past 10 years, employing specific keywords to identify relevant studies from databases such as PubMed, Google Scholar, EBSCO, and Biomed Central. There is a significant paucity of studies relevant to low serum Cl levels in patients with HF. We found that hypochloremia is commonly observed in HF cases, an often overlooked aspect in clinical setting, and is associated with poor outcomes. Substantial evidence supports the notion that hypochloremia can worsen HF, reduce the response to guideline-mediated therapies, and increase mortality. Hypochloremia activates numerous neurohormonal mechanisms, further worsening the cardiorenal circuit in HF. Furthermore, low Cl levels are associated with the development of diuretic resistance, making HF difficult to manage, particularly with loop diuretics. Studies reveal associations between hypochloremia and various kinases, with a particular emphasis on with-no-lysine kinases. These kinases, involved in regulating salt and water reabsorption, exacerbate the condition when Cl levels are low. Notably, a low serum Cl level is associated with high mortality in HF and worsens the condition. HF with hypochloremia poses challenges in treatment and should, therefore, be considered in management.

Keywords
Heart failure
Serum chloride
Hypochloremia
Electrolytes
Mortality
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Lauren T, Joseph R. Advanced heart failure: Epidemiology, diagnosis, and therapeutic approaches. JACC Heart Fail. 2020;8(7):523-536. doi: 10.1016/j.jchf.2020.01.014

 

  1. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13(6):368-378. doi: 10.1038/nrcardio.2016.25

 

  1. Martinez-Amezcua P, Haque W, Khera R, et al. The upcoming epidemic of heart failure in South Asia. Circ Heart Fail. 2020;13(10):e007218. doi: 10.1161/CIRCHEARTFAILURE.120.007218

 

  1. Kurmani S, Squire I. Acute heart failure: Definition, classification and epidemiology. Curr Heart Fail Rep. 2017;14(5):385-392. doi: 10.1007/s11897-017-0351-y

 

  1. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342-1356. doi: 10.1002/ejhf.1858

 

  1. Roger VL. Epidemiology of heart failure: A contemporary perspective. Circ Res. 2021;128(10):1421-1434. doi: 10.1161/CIRCRESAHA.121.318172

 

  1. Conrad N, Judge A, Canoy D, et al. Temporal trends and patterns in mortality after incident heart failure: A longitudinal analysis of 86 000 individuals. JAMA Cardiol. 2019;4(11):1102-1111. doi: 10.1001/jamacardio.2019.3593

 

  1. Lopuszynski JB, Downing AJ, Finley CM, Zahid M. Prognosticators of all-cause mortality in patients with heart failure with preserved ejection fraction. Am J Cardiol. 2021;158:66-73. doi: 10.1016/j.amjcard.2021.07.044

 

  1. Tomasoni D, Adamo M, Lombardi CM, Metra M. Highlights in heart failure. ESC Heart Fail. 2019;6(6):1105-1127. doi: 10.1002/ehf2.12555

 

  1. Kazory A. Chloride and cardiorenal interactions in heart failure. Nephron. 2022;147:6-8. doi: 10.1159/000524987

 

  1. Kataoka H. Acetazolamide as a potent chloride-regaining diuretic: Short-and long-term effects, and its pharmacologic role under the ‘chloride theory’ for heart failure pathophysiology. Heart Vessels. 2019;34(12):1952-1960. doi: 10.1007/s00380-019-01433-x

 

  1. Zandijk AJL, van Norel MR, Julius FEC, et al. Chloride in heart failure: The neglected electrolyte. JACC Heart Fail. 2021;9(12):904-915. doi: 10.1016/j.jchf.2021.07.006

 

  1. Adkins GB, Curtis MJ. Potential role of cardiac chloride channels and transporters as novel therapeutic targets. Pharmacol Ther. 2015;145:67-75. doi: 10.1016/j.pharmthera.2014.08.002

 

  1. Huang H, Liu J, Liang Y, et al. Prevalence and mortality of hypochloremia among patients suffering from coronary artery disease and congestive heart failure: An analysis of patients in CIN-I and MIMIC-III databases. Front Med (Lausanne). 2021;8:769646. doi: 10.3389/fmed.2021.769646

 

  1. Cuthbert JJ, Pellicori P, Rigby A, et al. Low serum chloride in patients with chronic heart failure: Clinical associations and prognostic significance. Eur J Heart Fail. 2018;20(10):1426-1435. doi: 10.1002/ejhf.1247

 

  1. Grodin JL, Simon J, Hachamovitch R, et al. Prognostic role of serum chloride levels in acute decompensated heart failure. J Am Coll Cardiol. 2015;66(6):659-666. doi: 10.1016/j.jacc.2015.06.007

 

  1. Thongprayoon C, Cheungpasitporn W, Petnak T, et al. Hospital-acquired serum chloride derangements and associated in-hospital mortality. Medicines (Basel). 2020;7(7):38. doi: 10.3390/medicines7070038

 

  1. Radulović B, Potočnjak I, Dokoza Terešak S, et al. Hypochloraemia as a predictor of developing hyponatraemia and poor outcome in acute heart failure patients. Int J Cardiol. 2016;212:237-241. doi: 10.1016/j.ijcard.2016.03.081

 

  1. Fu Z, An L, Lu X, Sheng L, Liu H. Serum chloride is inversely associated with 3 months outcomes in Chinese patients with heart failure, a retrospective cohort study. Front Cardiovasc Med. 2022;9:855053. doi: 10.3389/fcvm.2022.855053

 

  1. Nakamura J, Yamada T, Morita T, et al. Hypochloremia predicts poor clinical outcomes in patients with acute decompensated heart failure irrespective of left ventricular ejection fraction. Circulation. 2017;136:A17547. doi: 10.1161/circ.136.suppl_1.17547

 

  1. Wester PO, Dyckner T. Intracellular electrolytes in cardiac failure. Acta Med Scand Suppl. 1986;707:33-36. doi: 10.1111/j.0954-6820.1986.tb18112.x

 

  1. Braschi A, Naismith DJ. The effect of a dietary supplement of potassium chloride or potassium citrate on blood pressure in predominantly normotensive volunteers. Br J Nutr. 2008;99(6):1284-1292. doi: 10.1017/S0007114507864853

 

  1. McCallum L, Lip S, Padmanabhan S. The hidden hand of chloride in hypertension. Pflugers Arch. 2015;467(3):595-603. doi: 10.1007/s00424-015-1690-8

 

  1. Rivera FB, Alfonso P, Golbin JM, et al. The role of serum chloride in acute and chronic heart failure: A narrative review. Cardiorenal Med. 2021;11(2):87-98. doi: 10.1159/000515604

 

  1. Veizis IE, Cotton CU. Role of kidney chloride channels in health and disease. Pediatr Nephrol. 2007;22(6):770-777. doi: 10.1007/s00467-006-0355-4

 

  1. Masella C, Viggiano D, Molfino I, et al. Diuretic resistance in cardio-nephrology: Role of pharmacokinetics, hypochloremia, and kidney remodeling. Kidney Blood Press Res. 2019;44(5):915-927. doi: 10.1159/000502648

 

  1. Elfar A, Sambandam KK. The basic metabolic profile in heart failure-marker and modifier. Curr Heart Fail Rep. 2017;14(4):311-320. doi: 10.1007/s11897-017-0344-x

 

  1. Ravnan SL, Ravnan MC, Deedwania PC. Pharmacotherapy in congestive heart failure: Diuretic resistance and strategies to overcome resistance in patients with congestive heart failure. Congest Heart Fail. 2022;8:80-85. doi: 10.1111/j.1527-5299.2002.0758.x

 

  1. Shah N, Madanieh R, Alkan M, Dogar MU, Kosmas CE, Vittorio TJ. A perspective on diuretic resistance in chronic congestive heart failure. Ther Adv Cardiovasc Dis. 2017;11(10):271-278. doi: 10.1177/1753944717718717

 

  1. Brater DC. Resistance to loop diuretics. Why it happens and what to do about it. Drugs. 1985;30:427-443. doi: 10.2165/00003495-198530050-00003

 

  1. Aronson D. The complexity of diuretic resistance. Eur J Heart Fail. 2017;19:1023-1026. doi: 10.1002/ejhf.815

 

  1. Gerlag PG, van Meijel JJ. High-dose furosemide in the treatment of refractory congestive heart failure. Arch Intern Med. 1988;148(2):286-291. doi: 10.1001/archinte.1988.00380020030006

 

  1. Gottlieb SS, Khatta M, Wentworth D, Roffman D, Fisher ML, Kramer WG. The effects of diuresis on the pharmacokinetics of the loop diuretics furosemide and torsemide in patients with heart failure. Am J Med. 1998;104(6):533-538. doi: 10.1016/S0002-9343(98)00111-9

 

  1. Loon NR, Wilcox CS, Unwin RJ. Mechanism of impaired natriuretic response to furosemide during prolonged therapy. Kidney Int. 1989;36(4):682-689. doi: 10.1038/ki.1989.246

 

  1. Wilcox CS, Testani JM, Pitt B. Pathophysiology of diuretic resistance and its implications for the management of chronic heart failure. Hypertension. 2020;76(4):1045-1054. doi: 10.1161/HYPERTENSIONAHA.120.15205

 

  1. Ter Maaten JM, Damman K, Hanberg JS, et al. Hypochloremia, diuretic resistance, and outcome in patients with acute heart failure. Circ Heart Fail. 2016;9(8):e003109. doi: 10.1161/CIRCHEARTFAILURE.116.003109

 

  1. Simon J, Onyebeke C, Cheng SJ, Grodin J, Tang WHW, Testani JM. Hypochloremia is strongly and independently associated with mortality in patients with chronic heart failure. J Card Fail. 2015;21(8):S89-S90. doi: 10.1016/j.cardfail.2015.06.267

 

  1. Pleinis JM, Norrell L, Akella R, et al. WNKs are potassium-sensitive kinases. Am J Physiol Cell Physiol. 2021;320(5):C703-C721. doi: 10.1152/ajpcell.00456.2020

 

  1. Alessi DR, Zhang J, Khanna A, Hochdörfer T, Shang Y, Kahle KT. The WNK-SPAK/OSR1 pathway: Master regulator of cation-chloride cotransporters. Sci Signal. 2014;7(334):re3. doi: 10.1126/scisignal.2005365

 

  1. Testani JM, Brisco MA, Turner JM, et al. Loop diuretic efficiency: A metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014;7:261-270. doi: 10.1161/CIRCHEARTFAILURE.113.000895

 

  1. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122:265-272. doi: 10.1161/CIRCULATIONAHA.109.933275

 

  1. Suri SS, Pamboukian SV. Optimal diuretic strategies in heart failure. Ann Transl Med. 2021;9(6):517. doi: 10.21037/atm-20-4600

 

  1. Kataoka H. Biochemical determinants of changes in plasma volume after decongestion therapy for worsening heart failure. J Card Fail. 2019;25(3):213-217. doi: 10.1016/j.cardfail.2018.09.014

 

  1. Ferreira JP, Girerd N, Duarte K, et al. Serum chloride and sodium interplay in patients with acute myocardial infarction and heart failure with reduced ejection fraction: An analysis from the high-risk myocardial infarction database initiative. Circ Heart Fail. 2017;10(2):e003500. doi: 10.1161/CIRCHEARTFAILURE.116.003500

 

  1. Grodin JL. Pharmacologic approaches to electrolyte abnormalities in heart failure. Curr Heart Fail Rep. 2016;13(4):181-189. doi: 10.1007/s11897-016-0295-7

 

  1. Kataoka H. Rationale of the “chloride theory” as an explanation for neurohormonal activity in heart failure pathophysiology: Literature review. J Clin Exp Cardiol. 2019;10:634.

 

  1. Justin LG, Jeffrey MT, Ambarish P, et al. Perturbations in serum chloride homeostasis in heart failure with preserved ejection fraction: Insights from TOPCAT. Eur J Heart Fail. 2018;20(10):1436-1443. doi: 10.1002/ejhf.1229

 

  1. Funder JW. Aldosterone and mineralocorticoid receptors in the cardiovascular system. Prog Cardiovasc Dis. 2010;52(5):393-400. doi: 10.1016/j.pcad.2009.12.003

 

  1. Kazory A, Ronco C. Emergence of chloride as an overlooked cardiorenal connector in heart failure. Blood Purif. 2020;49(1-2):219-221. doi: 10.1159/000503774

 

  1. Fudim M, Hernandez AF, Felker GM. Role of volume redistribution in the congestion of heart failure. J Am Heart Assoc. 2017;6(8):e006817. doi: 10.1161/JAHA.117.006817

 

  1. Champagne K, Grgurich P, Nault K. Identifying drivers of hyperchloremia in critically ill adults. Crit Care Med. 2022;50(1):490. doi: 10.1097/01.ccm.0000810272.97123.a7

 

  1. Hanberg JS, Rao V, Ter Maaten JM, et al. Hypochloremia and diuretic resistance in heart failure: Mechanistic insights. Circ Heart Fail. 2016;9(8):e003180. doi: 10.1161/CIRCHEARTFAILURE.116.003180

 

  1. Kataoka H. The “chloride theory”, a unifying hypothesis for renal handling and body fluid distribution in heart failure pathophysiology. Med Hypotheses. 2017;104:170-173. doi: 10.1016/j.mehy.2017.06.005

 

  1. Steuber TD, Janzen KM, Howard ML. A systematic review and meta-analysis of metolazone compared to chlorothiazide for treatment of acute decompensated heart failure. Pharmacotherapy. 2020;40(9):924-935. doi: 10.1002/phar.2440

 

  1. Caramelo C, Albalate M, Tejedor A, et al. Current use of acetazolamide as a diuretic: Usefulness in refractory edema and in aldosterone-antagonist-related hyperkalemia. Nefrología. 2008;28(2):234-238.

 

  1. Verbrugge FH, Nijst P, Dupont M, Penders J, Tang WHW, Mullens W. Urinary composition during decongestive treatment in heart failure with reduced ejection fraction. Circ Heart Fail. 2014;7(5):766-772. doi: 10.1161/CIRCHEARTFAILURE.114.001377

 

  1. Khan MI. Treatment of refractory congestive heart failure and normokalemic hypochloremic alkalosis with acetazolamide and spironolactone. Can Med Assoc J. 1980; 123(9):883-887.

 

  1. Desai AS, Vardeny O, Claggett B, et al. Reduced risk of hyperkalemia during treatment of heart failure with mineralocorticoid receptor antagonists by use of Sacubitril/ Valsartan compared with Enalapril: A secondary analysis of the PARADIGM-HF trial. JAMA Cardiol. 2017;2(1):79-85. doi: 10.1001/jamacardio.2016.4733

 

  1. Kimura S, Matsumoto S, Muto N, et al. Association of serum chloride concentration with outcomes in postoperative critically ill patients: A retrospective observational study. J Intensive Care. 2014;2:39. doi: 10.1186/2052-0492-2-39

 

  1. Canepa-Escaro F, Neyra JA. Is dyschloremia a marker of critical illness or euchloremia an interventional target to improve outcomes? Ann Transl Med. 2019;7(Suppl 8):S264. doi: 10.21037/atm.2019.12.48

 

  1. Self WH, Semler MW, Wanderer JP, et al. Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med. 2018;378(9):819-828. doi: 10.1056/NEJMoa1711584

 

  1. Semler MW, Self WH, Wanderer JP, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378(9):829-839. doi: 10.1056/NEJMoa1711586
Share
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing