Respiratory sinus arrhythmia in humans: Correlation analysis with breathing-specific heart rate
In adult humans at rest, pulmonary ventilation and cardiac output share similar values, both approximately 5 L/min. Airflow is intermittent, with tidal volumes exceeding dead space, low breathing frequency (fresp), and zero air velocity at both end-inspiration and end-expiration. In contrast, the cardiac pump is in series with the vasculature, such that the small stroke volume and high heart rate (HR) (fh) allow for quasi-continuous blood flow. Based on experimental findings in dogs, it has been suggested that an elevated fh during inspiration (known as respiratory sinus arrhythmia [RSA]) decreases the disparity between air and blood flow patterns. Thus, one might hypothesize a positive correlation between the peak-trough difference of instantaneous fh (ΔHR’ = HR’peak – HR’trough) and the breathing-specific fh (fh/fresp). To test this hypothesis, we combined breath-by-breath data for ΔHR’ from several previous studies, resulting in a database of over 600 subjects. This extensive dataset allowed us to construct statistically meaningful correlations between ΔHR’ and variables associated with RSA (fh, fresp, HR’peak, and HR’trough). A strong statistically significant (r > 0.9) correlation between fh/fresp and ΔHR’ was observed. These findings support the hypothesis that RSA may be a mechanism for improving the match between the quasi-continuous blood flow and the intermittent airflow.
- Ludwig C. The influences of respiratory movements on blood flow in the aorta (Beiträge zur kenntniss des einflusses der respirationbewegungen auf den blutlauf im Aortensysteme). Arch. Anat. Physiol. 1847;13:242-302.
- Anrep GV, Pascual W, Rössler R. Respiratory variations of the heart rate. I. The reflex mechanisms of the respiratory arrhythmia. Proc R Soc Lond B Biol Sci. 1936;119:191-217.
- Anrep GV, Pascual W, Rössler R. Respiratory variations of the heart rate. II. The central mechanism of the respiratory arrhythmia and the inter-relations between the central and the reflex mechanisms. Proc R Soc Lond B Biol Sci. 1936;119:218-232.
- Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate. Am J Physiol. 1981;241:H620-H629. doi: 10.1152/ajpheart.1981.241.4.H620
- Daly MDB. Interactions between respiration and circulation. In: Cherniak NS, Widdicombe JG, editors. Handbook of Physiology, The Respiratory System. Vol. 2., Ch. 16. Control of Breathing Part 2. Bethesda (MD): Williams & Wilkins; 1986. p. 529-594.
- Taha BH, Simon PM, Dempsey JA, Skatrud JB, Iber C. Respiratory sinus arrhythmia in humans: An obligatory role for vagal feedback from the lungs. J Appl Physiol (1985). 1995;78:638-645. doi: 10.1152/jappl.1995.78.2.638
- Schäfer C, Rosenblum MG, Kurths J, Abel HH. Heartbeat synchronized with ventilation. Nature. 1998;392:239-240. doi: 10.1038/32567
- Farmer DGS, Dutschmann M, Paton JFR, Pickering AE, McAllen RM. Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia. J Physiol. 2016;594:7249-7265. doi: 10.1113/JP273164
- Grosso G, Vezzosi T, Briganti A, Di Franco C, Tognetti R, Mortola JP. Breath-by-breath analysis of respiratory sinus arrhythmia in dogs. Respir Physiol Neurobiol. 2021;294:103776. doi: 10.1016/j.resp.2021.103776
- Larsen PD, Tzeng YC, Sin PYW, Galletly DC. Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respir Physiol Neurobiol. 2010;174:111-118. doi: 10.1016/j.resp.2010.04.021
- Tzeng YC, Sin PYW, Galletly DC. Human sinus arrhythmia: Inconsistencies of a teleological hypothesis. Am J Physiol Heart Circ Physiol. 2009;296:H65-H70. doi: 10.1152/ajpheart.00716.2008
- Sin PYW, Webber MR, Galletly DC, et al. Interaction between heart rate variability and pulmonary gas exchange in humans. Exp Physiol. 2010;95:788-797. doi: 10.1113/expphysiol.2010.052910
- Ben-Tal A, Shamailov SS, Paton JFR. Evaluating the physiological significance of respiratory sinus arrhythmia: Looking beyond ventilation-perfusion efficiency. J Physiol. 2012;590:1989-2008. doi: 10.1113/jphysiol.2011.222422
- Uechi M, Asai K, Osaka M, et al. Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsα. Circ Res. 1998;82:416-423. doi: 10.1161/01.res.82.4.416
- Hashizume NS, Kitajima Y, Ide R, Nakamura E, Saiki C. Respiratory sinus arrhythmia in spontaneously breathing, unanesthetized newborn and adult Wistar rats. Respir Physiol Neurobiol. 2024;321:104207. doi: 10.1016/j.resp.2023.104207
- Piccione G, Giudice E, Giannetto C, Mortola JP. The magnitude of respiratory sinus arrhythmia of a large mammal (the horse) is like that of humans. Respir Physiol Neurobiol. 2019;259:170-172. doi: 10.1016/j.resp.2018.09.006
- Orsetti C, Vitale V, Mortola JP, Sgorbini M, Bonelli F. Respiratory sinus arrhythmia magnitude quantification as a potential marker of stress and pain in cows and sheep. Vet Res Commun. 2023;47:279-284. doi: 10.1007/s11259-022-09922-7
- Hayano J, Yasuma F, Okada A, Mukai S, Fujinami T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation. 1996;94:842-847. doi: 10.1161/01.cir.94.4.842
- Hayano J, Yasuma F. Hypothesis: Respiratory sinus arrhythmia is an intrinsic resting function of cardiopulmonary system. Cardiovasc Res. 2003;58:1-9. doi: 10.1016/S0008-6363(02)00851-9
- Giardino ND, Glenny RW, Borson S, Chan L. Respiratory sinus arrhythmia is associated with efficiency of pulmonary gas exchange in healthy humans. Am J Physiol Heart Circ Physiol. 2003;284:H1585-H1591. doi: 10.1152/ajpheart.00893.2002
- Yasuma F, Hayano JI. Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125:683-690. doi: 10.1378/chest.125.2.683
- Angelone A, Coulter NA Jr. Respiratory sinus arrhythmia: A frequency dependent phenomenon. J Appl Physiol. 1964;19:479-482. doi: 10.1152/jappl.1964.19.3.479
- Mortola JP, Marghescu D, Siegrist-Johnstone R. Respiratory sinus arrhythmia in young men and women at different chest wall configurations. Clin Sci. 2015;128:507-516. doi: 10.1042éCS20140543
- Malik M. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043-1065.
- Barnett SR, Morin RJ, Kiely DK, et al. Effects of age and gender on autonomic control of blood pressure dynamics. Hypertension. 1999;33:1195-1200. doi: 10.1161/01.HYP.33.5.1195
- Grossman P, van Beek J, Wientjes C. A comparison of three quantification methods for estimation of respiratory sinus arrhythmia. Psychophysiol. 1990;27:702-714. doi: 10.1111/j.1469-8986.1990.tb03198.x
- Zhang J, Yu X, Xie D. Effects of mental tasks on the cardiorespiratory synchronization. Respir Physiol Neurobiol. 2010;170:91-95. doi: 10.1016/j.resp.2009.11.003
- Gilfriche P, Arsac LM, Daviaux Y, et al. Highly sensitive index of cardiac autonomic control based on time-varying respiration derived from ECG. Am J Physiol Regul Integr Comp Physiol. 2018;315:R469-R478. doi: 10.1152/ajpregu.00057.2018
- Mestanik M, Mestanikova A, Langer P, et al. Respiratory sinus arrhythmia - testing the method of choice for evaluation of cardiovagal regulation. Respir Physiol Neurobiol. 2019;259:86-92. doi: 10.1016/j.resp.2018.08.002
- Schechtman VL, Raetz SL, Harper RK, et al. Dynamic analysis of cardiac R-R intervals in normal infants and in infants who subsequently succumbed to the sudden infant death syndrome. Pediatr Res. 1992;31:606-612. doi: 10.1203/00006450-199206000-00014
- Fei L, Copie X, Malik M, Camm AJ. Short- and long-term assessment of heart rate variability for risk stratification after acute myocardial infarction. Am J Cardiol. 1996;77:681-684. doi: 10.1016/s0002-9149(97)89199-0
- Fei L, Keeling PJ, Sadoul N, et al. Decreased heart rate variability in patients with congestive heart failure and chronotropic incompetence. Pacing Clin Electrophysiol. 1996;19:477-483. doi: 10.1111/j.1540-8159.1996.tb06519.x
- La Rovere MT, Pinna GD, Maestri R, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107:565-570. doi: 10.1161/01.CIR.0000047275.25795.17
- Tonhajzerova I, Ondrejka I, Javorka M, et al. Respiratory sinus arrhythmia is reduced in adolescent major depressive disorder. Eur J Med Res. 2009;14 (Suppl 4):280-283. doi: 10.1186/2047-783X-14-S4-280
- Langewitz W, Rüddel H, Schächinger H, et al. Changes in sympathetic and parasympathetic cardiac activation during mental load: An assessment by spectral analysis of heart rate variability. Homeost. Health Dis. 1991;33:23-33.
- Taylor JA, Myers CW, Halliwill JR, Seidel H, Eckberg DL. Sympathetic restraint of respiratory sinus arrhythmia: Implications for vagal-cardiac tone assessment in humans. Am J Physiol Heart Circ Physiol. 2001;280:H2804-H2814. doi: 10.1152/ajpheart.2001.280.6.H2804
- Brown SJ. Dissociation of respiratory sinus arrhythmia and high frequency heart rate variability following exercise (English translation). Med Sport. 2010;14:43-49. doi: 10.2478/v10036-010-0009-2
- Mortola JP, Marghescu D, Siegrist-Johnstone R. Thinking about breathing: Effects on respiratory sinus arrhythmia. Respir Physiol Neurobiol. 2016;223:28-36. doi: 10.1016/j.resp.2015.12.004
- Mortola JP, Marghescu D, Siegrist-Johnstone R, Matthes E. Respiratory sinus arrhythmia during a mental attention task: The role of breathing-specific heart rate. Respir Physiol Neurobiol. 2020;272:103331. doi: 10.1016/j.resp.2019.103331
- Hanton G, Rabemampianina Y. The electrocardiogram of the Beagle dog: Reference values and effect of sex, genetic strain, body position and heart rate. Lab Anim. 2006;40:123-136. doi: 10.1258/002367706776319088
- Mortola JP, Marghescu D, Siegrist-Johnstone R. Respiratory sinus arrhythmia in the immediate post-exercise period: Correlation with breathing-specific heart rate. Eur J Appl Physiol. 2018;118:1397-1406. doi: 10.1007/s00421-018-3871-6
- Konno K, Mead J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol. 1967;22:407-422. doi: 10.1152/jappl.1967.22.3.407
- Mead J, Peterson N, Grimby G, Mead J. Pulmonary ventilation measured from body surface movements. Science. 1967;156:1383-1384. doi: 10.1126/science.156.3780.1383
- Mortola JP, Anch AM. Chest wall configuration in supine man; wakefulness and sleep. Respir Physiol. 1978;35:201-213. doi: 10.1016/0034-5687(78)90022-1
- Smetana P, Malik M. Sex differences in cardiac autonomic regulation and in repolarization electrocardiography. Pflugers Arch Eur J Physiol. 2013;465:699-717. doi: 10.1007/s00424-013-1228-x
- Quer G, Gouda P, Galarnyk M, Topol EJ, Steinhubl SR. Inter- and intraindividual variability in daily resting heart rate and its associations with age, sex, sleep, BMI, and time of year: Retrospective, longitudinal cohort study of 92,457 adults. PLoS One. 2020;15:0227709. doi: 10.1371/journal.pone.0227709
- Goorakani Y, Rahimabadi MS, Dehghan A, et al. Correlation of resting heart rate with anthropometric factors and serum biomarkers in a population-based study: Fasa PERSIAN cohort study. BMC Cardiovasc Dis. 2020;20:319-328. doi: 10.1186/s12872-020-01594-y
- Mortola JP. The heart rate - breathing rate relationship in aquatic mammals: A comparative analysis with terrestrial species. Curr Zool. 2015;61:569-577. doi: 10.1093/czoolo/61.4.569
- Davis CTM, Neilson JMM. Sinus arrhythmia in man at rest. J Appl Physiol. 1967;22:947-955. doi: 10.1152/jappl.1967.22.5.947