AccScience Publishing / BH / Volume 2 / Issue 4 / DOI: 10.36922/bh.3956
ORIGINAL RESEARCH ARTICLE

Respiratory sinus arrhythmia in humans: Correlation analysis with breathing-specific heart rate

Jacopo P. Mortola1*
Show Less
1 Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
Brain & Heart 2024, 2(4), 3956 https://doi.org/10.36922/bh.3956
Submitted: 17 June 2024 | Accepted: 29 October 2024 | Published: 2 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In adult humans at rest, pulmonary ventilation and cardiac output share similar values, both approximately 5 L/min. Airflow is intermittent, with tidal volumes exceeding dead space, low breathing frequency (fresp), and zero air velocity at both end-inspiration and end-expiration. In contrast, the cardiac pump is in series with the vasculature, such that the small stroke volume and high heart rate (HR) (fh) allow for quasi-continuous blood flow. Based on experimental findings in dogs, it has been suggested that an elevated fh during inspiration (known as respiratory sinus arrhythmia [RSA]) decreases the disparity between air and blood flow patterns. Thus, one might hypothesize a positive correlation between the peak-trough difference of instantaneous fh (ΔHR’ = HR’peak – HR’trough) and the breathing-specific fh (fh/fresp). To test this hypothesis, we combined breath-by-breath data for ΔHR’ from several previous studies, resulting in a database of over 600 subjects. This extensive dataset allowed us to construct statistically meaningful correlations between ΔHR’ and variables associated with RSA (fh, fresp, HR’peak, and HR’trough). A strong statistically significant (r > 0.9) correlation between fh/fresp and ΔHR’ was observed. These findings support the hypothesis that RSA may be a mechanism for improving the match between the quasi-continuous blood flow and the intermittent airflow.

Keywords
Cardiac arrhythmia
Cardiorespiratory design
Parasympathetic control
Pulmonary gas exchange
Ventilation-perfusion matching
Funding
None.
Conflict of interest
The author declares no competing interests in this article.
References
  1. Ludwig C. The influences of respiratory movements on blood flow in the aorta (Beiträge zur kenntniss des einflusses der respirationbewegungen auf den blutlauf im Aortensysteme). Arch. Anat. Physiol. 1847;13:242-302.

 

  1. Anrep GV, Pascual W, Rössler R. Respiratory variations of the heart rate. I. The reflex mechanisms of the respiratory arrhythmia. Proc R Soc Lond B Biol Sci. 1936;119:191-217.

 

  1. Anrep GV, Pascual W, Rössler R. Respiratory variations of the heart rate. II. The central mechanism of the respiratory arrhythmia and the inter-relations between the central and the reflex mechanisms. Proc R Soc Lond B Biol Sci. 1936;119:218-232.

 

  1. Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate. Am J Physiol. 1981;241:H620-H629. doi: 10.1152/ajpheart.1981.241.4.H620

 

  1. Daly MDB. Interactions between respiration and circulation. In: Cherniak NS, Widdicombe JG, editors. Handbook of Physiology, The Respiratory System. Vol. 2., Ch. 16. Control of Breathing Part 2. Bethesda (MD): Williams & Wilkins; 1986. p. 529-594.

 

  1. Taha BH, Simon PM, Dempsey JA, Skatrud JB, Iber C. Respiratory sinus arrhythmia in humans: An obligatory role for vagal feedback from the lungs. J Appl Physiol (1985). 1995;78:638-645. doi: 10.1152/jappl.1995.78.2.638

 

  1. Schäfer C, Rosenblum MG, Kurths J, Abel HH. Heartbeat synchronized with ventilation. Nature. 1998;392:239-240. doi: 10.1038/32567

 

  1. Farmer DGS, Dutschmann M, Paton JFR, Pickering AE, McAllen RM. Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia. J Physiol. 2016;594:7249-7265. doi: 10.1113/JP273164

 

  1. Grosso G, Vezzosi T, Briganti A, Di Franco C, Tognetti R, Mortola JP. Breath-by-breath analysis of respiratory sinus arrhythmia in dogs. Respir Physiol Neurobiol. 2021;294:103776. doi: 10.1016/j.resp.2021.103776

 

  1. Larsen PD, Tzeng YC, Sin PYW, Galletly DC. Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respir Physiol Neurobiol. 2010;174:111-118. doi: 10.1016/j.resp.2010.04.021

 

  1. Tzeng YC, Sin PYW, Galletly DC. Human sinus arrhythmia: Inconsistencies of a teleological hypothesis. Am J Physiol Heart Circ Physiol. 2009;296:H65-H70. doi: 10.1152/ajpheart.00716.2008

 

  1. Sin PYW, Webber MR, Galletly DC, et al. Interaction between heart rate variability and pulmonary gas exchange in humans. Exp Physiol. 2010;95:788-797. doi: 10.1113/expphysiol.2010.052910

 

  1. Ben-Tal A, Shamailov SS, Paton JFR. Evaluating the physiological significance of respiratory sinus arrhythmia: Looking beyond ventilation-perfusion efficiency. J Physiol. 2012;590:1989-2008. doi: 10.1113/jphysiol.2011.222422

 

  1. Uechi M, Asai K, Osaka M, et al. Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsα. Circ Res. 1998;82:416-423. doi: 10.1161/01.res.82.4.416

 

  1. Hashizume NS, Kitajima Y, Ide R, Nakamura E, Saiki C. Respiratory sinus arrhythmia in spontaneously breathing, unanesthetized newborn and adult Wistar rats. Respir Physiol Neurobiol. 2024;321:104207. doi: 10.1016/j.resp.2023.104207

 

  1. Piccione G, Giudice E, Giannetto C, Mortola JP. The magnitude of respiratory sinus arrhythmia of a large mammal (the horse) is like that of humans. Respir Physiol Neurobiol. 2019;259:170-172. doi: 10.1016/j.resp.2018.09.006

 

  1. Orsetti C, Vitale V, Mortola JP, Sgorbini M, Bonelli F. Respiratory sinus arrhythmia magnitude quantification as a potential marker of stress and pain in cows and sheep. Vet Res Commun. 2023;47:279-284. doi: 10.1007/s11259-022-09922-7

 

  1. Hayano J, Yasuma F, Okada A, Mukai S, Fujinami T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation. 1996;94:842-847. doi: 10.1161/01.cir.94.4.842

 

  1. Hayano J, Yasuma F. Hypothesis: Respiratory sinus arrhythmia is an intrinsic resting function of cardiopulmonary system. Cardiovasc Res. 2003;58:1-9. doi: 10.1016/S0008-6363(02)00851-9

 

  1. Giardino ND, Glenny RW, Borson S, Chan L. Respiratory sinus arrhythmia is associated with efficiency of pulmonary gas exchange in healthy humans. Am J Physiol Heart Circ Physiol. 2003;284:H1585-H1591. doi: 10.1152/ajpheart.00893.2002

 

  1. Yasuma F, Hayano JI. Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125:683-690. doi: 10.1378/chest.125.2.683

 

  1. Angelone A, Coulter NA Jr. Respiratory sinus arrhythmia: A frequency dependent phenomenon. J Appl Physiol. 1964;19:479-482. doi: 10.1152/jappl.1964.19.3.479

 

  1. Mortola JP, Marghescu D, Siegrist-Johnstone R. Respiratory sinus arrhythmia in young men and women at different chest wall configurations. Clin Sci. 2015;128:507-516. doi: 10.1042éCS20140543

 

  1. Malik M. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043-1065.

 

  1. Barnett SR, Morin RJ, Kiely DK, et al. Effects of age and gender on autonomic control of blood pressure dynamics. Hypertension. 1999;33:1195-1200. doi: 10.1161/01.HYP.33.5.1195

 

  1. Grossman P, van Beek J, Wientjes C. A comparison of three quantification methods for estimation of respiratory sinus arrhythmia. Psychophysiol. 1990;27:702-714. doi: 10.1111/j.1469-8986.1990.tb03198.x

 

  1. Zhang J, Yu X, Xie D. Effects of mental tasks on the cardiorespiratory synchronization. Respir Physiol Neurobiol. 2010;170:91-95. doi: 10.1016/j.resp.2009.11.003

 

  1. Gilfriche P, Arsac LM, Daviaux Y, et al. Highly sensitive index of cardiac autonomic control based on time-varying respiration derived from ECG. Am J Physiol Regul Integr Comp Physiol. 2018;315:R469-R478. doi: 10.1152/ajpregu.00057.2018

 

  1. Mestanik M, Mestanikova A, Langer P, et al. Respiratory sinus arrhythmia - testing the method of choice for evaluation of cardiovagal regulation. Respir Physiol Neurobiol. 2019;259:86-92. doi: 10.1016/j.resp.2018.08.002

 

  1. Schechtman VL, Raetz SL, Harper RK, et al. Dynamic analysis of cardiac R-R intervals in normal infants and in infants who subsequently succumbed to the sudden infant death syndrome. Pediatr Res. 1992;31:606-612. doi: 10.1203/00006450-199206000-00014

 

  1. Fei L, Copie X, Malik M, Camm AJ. Short- and long-term assessment of heart rate variability for risk stratification after acute myocardial infarction. Am J Cardiol. 1996;77:681-684. doi: 10.1016/s0002-9149(97)89199-0

 

  1. Fei L, Keeling PJ, Sadoul N, et al. Decreased heart rate variability in patients with congestive heart failure and chronotropic incompetence. Pacing Clin Electrophysiol. 1996;19:477-483. doi: 10.1111/j.1540-8159.1996.tb06519.x

 

  1. La Rovere MT, Pinna GD, Maestri R, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107:565-570. doi: 10.1161/01.CIR.0000047275.25795.17

 

  1. Tonhajzerova I, Ondrejka I, Javorka M, et al. Respiratory sinus arrhythmia is reduced in adolescent major depressive disorder. Eur J Med Res. 2009;14 (Suppl 4):280-283. doi: 10.1186/2047-783X-14-S4-280

 

  1. Langewitz W, Rüddel H, Schächinger H, et al. Changes in sympathetic and parasympathetic cardiac activation during mental load: An assessment by spectral analysis of heart rate variability. Homeost. Health Dis. 1991;33:23-33.

 

  1. Taylor JA, Myers CW, Halliwill JR, Seidel H, Eckberg DL. Sympathetic restraint of respiratory sinus arrhythmia: Implications for vagal-cardiac tone assessment in humans. Am J Physiol Heart Circ Physiol. 2001;280:H2804-H2814. doi: 10.1152/ajpheart.2001.280.6.H2804

 

  1. Brown SJ. Dissociation of respiratory sinus arrhythmia and high frequency heart rate variability following exercise (English translation). Med Sport. 2010;14:43-49. doi: 10.2478/v10036-010-0009-2

 

  1. Mortola JP, Marghescu D, Siegrist-Johnstone R. Thinking about breathing: Effects on respiratory sinus arrhythmia. Respir Physiol Neurobiol. 2016;223:28-36. doi: 10.1016/j.resp.2015.12.004

 

  1. Mortola JP, Marghescu D, Siegrist-Johnstone R, Matthes E. Respiratory sinus arrhythmia during a mental attention task: The role of breathing-specific heart rate. Respir Physiol Neurobiol. 2020;272:103331. doi: 10.1016/j.resp.2019.103331

 

  1. Hanton G, Rabemampianina Y. The electrocardiogram of the Beagle dog: Reference values and effect of sex, genetic strain, body position and heart rate. Lab Anim. 2006;40:123-136. doi: 10.1258/002367706776319088

 

  1. Mortola JP, Marghescu D, Siegrist-Johnstone R. Respiratory sinus arrhythmia in the immediate post-exercise period: Correlation with breathing-specific heart rate. Eur J Appl Physiol. 2018;118:1397-1406. doi: 10.1007/s00421-018-3871-6

 

  1. Konno K, Mead J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol. 1967;22:407-422. doi: 10.1152/jappl.1967.22.3.407

 

  1. Mead J, Peterson N, Grimby G, Mead J. Pulmonary ventilation measured from body surface movements. Science. 1967;156:1383-1384. doi: 10.1126/science.156.3780.1383

 

  1. Mortola JP, Anch AM. Chest wall configuration in supine man; wakefulness and sleep. Respir Physiol. 1978;35:201-213. doi: 10.1016/0034-5687(78)90022-1

 

  1. Smetana P, Malik M. Sex differences in cardiac autonomic regulation and in repolarization electrocardiography. Pflugers Arch Eur J Physiol. 2013;465:699-717. doi: 10.1007/s00424-013-1228-x

 

  1. Quer G, Gouda P, Galarnyk M, Topol EJ, Steinhubl SR. Inter- and intraindividual variability in daily resting heart rate and its associations with age, sex, sleep, BMI, and time of year: Retrospective, longitudinal cohort study of 92,457 adults. PLoS One. 2020;15:0227709. doi: 10.1371/journal.pone.0227709

 

  1. Goorakani Y, Rahimabadi MS, Dehghan A, et al. Correlation of resting heart rate with anthropometric factors and serum biomarkers in a population-based study: Fasa PERSIAN cohort study. BMC Cardiovasc Dis. 2020;20:319-328. doi: 10.1186/s12872-020-01594-y

 

  1. Mortola JP. The heart rate - breathing rate relationship in aquatic mammals: A comparative analysis with terrestrial species. Curr Zool. 2015;61:569-577. doi: 10.1093/czoolo/61.4.569

 

  1. Davis CTM, Neilson JMM. Sinus arrhythmia in man at rest. J Appl Physiol. 1967;22:947-955. doi: 10.1152/jappl.1967.22.5.947
Share
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing