AccScience Publishing / BH / Volume 2 / Issue 1 / DOI: 10.36922/bh.2065
Cite this article
89
Download
715
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
MINI-REVIEW

Therapeutic potential of mesenchymal stem cells and their mechanisms of regeneration for cardiac diseases

Merlin Sobia Poomani1 Varshini Radhakrishnan1 Senolin Bindhia James1 Krishnaveni Muthan2 Venkatesh Subramanian1*
Show Less
1 Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
2 Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
Brain & Heart 2024, 2(1), 2065 https://doi.org/10.36922/bh.2065
Submitted: 18 October 2023 | Accepted: 30 November 2023 | Published: 13 February 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Ischemic heart disease remains a major contributor to mortality and disability despite significant advancements in traditional treatments. This threat underscores the need for exploring innovative cell-based therapies. The analysis of various stem and progenitor cells’ capacity to promote heart regeneration has led to encouraging outcomes in preclinical and clinical experiments. Mesenchymal stem cells (MSCs) have demonstrated the ability to contribute to heart regeneration through several pathways, including differentiation from the mesoderm lineage, immunomodulatory characteristics, and paracrine actions. In addition, their accessibility, maintenance, and capacity to replenish endogenous stem cell niches render them appropriate for cutting-edge research. This review outlines the robust mechanism underpinning MSC-based heart regeneration, presents the potential therapeutic uses of MSCs for ischemic heart disease, and highlights some preclinical findings.

Keywords
Mesenchymal stem cells
Exosomes
Cardiac diseases
Clinical trials
Regeneration
Funding
None.
References
  1. Sans S, Kesteloot H, Kromhout D. The burden of cardiovascular diseases mortality in Europe: Task force of the European society of cardiology on cardiovascular mortality and morbidity statistics in Europe. Eur Heart J. 1997;18(8):1231-1248.doi: 10.1093/oxfordjournals.eurheartj.a015434

 

  1. Frangogiannis C, Steenbergen N. Chapter 36: Ischemic heart disease. Hill JA, Olson EN, editors. Muscle. Cambridge: Academic Press; 2012. p. 495-521. doi: 10.1016/B978-0-12-381510-1.00036-3

 

  1. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886. doi: 10.3390/cells8080886

 

  1. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230-247.

 

  1. Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis. 2020;11(5):349. doi: 10.1038/s41419-020-2542-9

 

  1. Dominici M, Le Blanc K, Mueller L, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315-317. doi: 10.1080/14653240600855905

 

  1. Jeong H, Yim HW, Park HJ, et al. Mesenchymal stem cell therapy for ischemic heart disease: Systematic review and meta-analysis. Int J Stem Cells. 2018;11(1):1-12. doi: 10.15283/ijsc17061

 

  1. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204-1219. doi: 10.1161/CIRCRESAHA.108.176826

 

  1. Hatzistergos KE, Quevedo H, Oskouei BN, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107(7):913-922. doi: 10.1161/CIRCRESAHA.110.222703

 

  1. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277-2286. doi: 10.1016/j.jacc.2009.06.055

 

  1. Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial. JAMA. 2012;308(22):2369-2379. doi: 10.1001/jama.2012.25321

 

  1. Heldman AW, Difede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. JAMA. 2015;311(1):62-73. doi: 10.1001/jama.2013.282909

 

  1. Boyle AJ, McNiece IK, Hare JM. Mesenchymal stem cell therapy for cardiac repair. Methods Mol Biol. 2010;660(24):65-84. doi: 10.1007/978-1-60761-705-1_5

 

  1. Butler J, Epstein SE, Greene SJ, et al. Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: Safety and efficacy results of a Phase II-A randomized trial. Circ Res. 2017;120(2):332-340. doi: 10.1161/CIRCRESAHA.116.309717

 

  1. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A. 2005;102(32):11474-11479. doi: 10.1073/pnas.0504388102

 

  1. Liu CB, Huang H, Sun P, et al. Human umbilical cord‐derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia. Stem Cells Transl Med. 2016;5(8):1004-1013. doi: 10.5966/sctm.2015-0298

 

  1. Vilahur G, Oñate B, Cubedo J, et al. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: Systems biology study. Stem Cell Res Ther. 2017;8(1):1-15. doi: 10.1186/s13287-017-0509-2

 

  1. Kanelidis AJ, Premer C, Lopez J, Balkan W, Hare JM. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: A meta-analysis of preclinical studies and clinical trials. Circ Res. 2017;120(7):1139-1150. doi: 10.1161/CIRCRESAHA.116.309819

 

  1. Ward MR, Abadeh A, Connelly KA. Concise review: Rational use of mesenchymal stem cells in the treatment of ischemic heart disease. Stem Cells Transl Med. 2018;7(7):543-550. doi: 10.1002/sctm.17-0210

 

  1. Nakanishi C, Yamagishi M, Yamahara K, et al. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun. 2008;374(1):11-16. doi: 10.1016/j.bbrc.2008.06.074

 

  1. Collino F, Deregibus MC, Bruno S, et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One. 2010;5(7):e11803. doi: 10.1371/journal.pone.0011803

 

  1. Zhu W, Huang L, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315(1):28-37. doi: 10.1016/j.canlet.2011.10.002

 

  1. Tomasoni S, Longaretti L, Rota C, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 2013;22(5):772-780. doi: 10.1089/scd.2012.0266

 

  1. Yu B, Gong M, Wang Y, et al. Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One. 2013;8(8):e73304. doi: 10.1371/journal.pone.0073304

 

  1. Huang P, Wang L, Li Q, et al. Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Res Ther. 2019;10(1):300. doi: 10.1186/s13287-019-1353-3

 

  1. Zlatanova I, Pinto C, Silvestre JS. Immune modulation of cardiac repair and regeneration: The art of mending broken hearts. Front Cardiovasc Med. 2016;3:40. doi: 10.3389/fcvm.2016.00040

 

  1. Van Den Akker F, De Jager SCA, Sluijter JPG. Mesenchymal stem cell therapy for cardiac inflammation: Immunomodulatory properties and the influence of toll-like receptors. Mediators Inflamm. 2013;2013:181020. doi: 10.1155/2013/181020

 

  1. Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54-63. doi: 10.1016/j.stem.2009.05.003

 

  1. Lemcke H, Voronina N, Steinhoff G, David R. Recent progress in stem cell modification for cardiac regeneration. Stem Cells Int. 2018;2018:1909346. doi: 10.1155/2018/1909346

 

  1. Orlic D, Kajstura J, Chimenti S, Dm B, Leri A, Anversa P. Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant. 2003;7:86-88. doi: 10.1034/j.1399-3046.7.s3.13.x

 

  1. Mu Y, Cao G, Zeng Q, Li Y. Transplantation of induced bone marrow mesenchymal stem cells improves the cardiac function of rabbits with dilated cardiomyopathy via upregulation of vascular endothelial growth factor and its receptors. Exp Biol Med (Maywood). 2011;236(9):1100- 1107. doi: 10.1258/ebm.2011.011066

 

  1. Zhang C, Zhou G, Chen Y, et al. Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF‑α and TGF‑β1/ERK1/2 signaling pathways. Mol Med Rep. 2018;17(1):71-78. doi: 10.3892/mmr.2017.7882

 

  1. Ciszek B, Skubiszewska D, Ratajska A. The anatomy of the cardiac veins in mice. J Anat. 2007;211(1):53-63. doi: 10.1111/j.1469-7580.2007.00753.x

 

  1. Price MJ, Chou CC, Frantzen M, et al. Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol. 2006;111(2):231-239. doi: 10.1016/j.ijcard.2005.07.036

 

  1. Qi CM, Ma GS, Liu NF, et al. Transplantation of magnetically labeled mesenchymal stem cells improves cardiac function in a swine myocardial infarction model. Chin Med J (Engl). 2008;121(6):544-550. doi: 10.1097/00029330-200803020-00016

 

  1. Hamamoto H, Gorman JH 3rd, Ryan LP, et al. Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: The effect of cell dosage. Ann Thorac Surg. 2009;87(3):794-801. doi: 10.1016/j.athoracsur.2008.11.057

 

  1. Karantalis V, Difede DL, Gerstenblith G, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (PROMETHEUS) trial. Circ Res. 2014;114(8):1302-1310. doi: 10.1161/CIRCRESAHA.114.303180

 

  1. Florea V, Rieger AC, DiFede DL, et al. Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (The TRIDENT study). Circ Res. 2017;121(11):1279-1290. doi: 10.1161/CIRCRESAHA.117.311827

 

  1. Breitbach M, Bostani T, Roell W, et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood. 2007;110(4):1362-1369. doi: 10.1182/blood-2006-12-063412

 

  1. Lin CS, Xin ZC, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol Histopathol. 2013;28(9):1109-1116. doi: 10.14670/HH-28.1109

 

  1. Kandala J, Upadhyay GA, Pokushalov E, Wu S, Drachman DE, Singh JP. Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. Am J Cardiol. 2013;112(2):217-225. doi: 10.1016/j.amjcard.2013.03.021

 

  1. Zhang M, Mal N, Kiedrowski M, et al. SDF‐1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21(12):3197-3207. doi: 10.1096/fj.06-6558com

 

  1. Karpov AA, Udalova DV, Pliss MG, Galagudza MM. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells. Cell Prolif. 2017;50(2):e12316. doi: 10.1111/cpr.12316

 

  1. Pankajakshan D, Agrawal DK. Mesenchymal stem cell paracrine factors in vascular repair and regeneration. J Biomed Technol Res. 2014;1(1). doi: 10.19104/jbtr.2014.107

 

  1. Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal stem cell-based therapy for cardiovascular disease: Progress and challenges. Mol Ther. 2018;26(7):1610-1623. doi: 10.1016/j.ymthe.2018.05.009

 

  1. Poomani MS, Mariappan I, Perumal R, Regurajan R, Muthan K, Subramanian V. Mesenchymal stem cell (MSCs) therapy for ischemic heart disease: A promising frontier. Glob Heart. 2022;17(1):19. doi: 10.5334/gh.1098

 

  1. Li B, Zeng Q, Wang H, et al. Adipose tissue stromal cells transplantation in rats of acute myocardial infarction. Coron Artery Dis. 2007;18(3):221-227. doi: 10.1097/MCA.0b013e32801235da

 

  1. Makkar RR, Price MJ, Lill M, et al. Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. J Cardiovasc Pharmacol Ther. 2005;10(4):225-233. doi: 10.1177/107424840501000403

 

  1. Bobi J, Solanes N, Fernández‐Jiménez R, et al. Intracoronary administration of allogeneic adipose tissue-derived mesenchymal stem cells improves myocardial perfusion but not left ventricle function, in a translational model of acute myocardial infarction. J Am Heart Assoc. 2017;6(5):e005771. doi: 10.1161/JAHA.117.005771
Conflict of interest
The authors declare that they have no competing interests.
Share
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing