AccScience Publishing / BH / Volume 2 / Issue 1 / DOI: 10.36922/bh.1886
Cite this article
Journal Browser
Volume | Year
News and Announcements
View All

Sleep-induced limb vasodilation in individuals confined to bed for 24 h

Edoardo Casiglia1* Valérie Tikhonoff2
Show Less
1 Department of Medicine, Studium Patavinum, University of Padua, Padua, Italy
2 2 Department of Medicine, Unit of Nutrition, University of Padua, Padua, Italy
Brain & Heart 2024, 2(1), 1886
Submitted: 21 September 2023 | Accepted: 11 December 2023 | Published: 15 February 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

The sleep/wake rhythm in limbs has been scarcely studied, especially due to the difficulty associated with continuous monitoring of arterial flow to the forearm and leg for a 24-h period. Addressing this constraint, we employed indium-gallium-in-silicone strain-gauge venous-occlusion plethysmography, an automated method facilitating the measurement of 24-h limb arterial flow in bed-confined subjects without disturbing their natural sleep. This article presents the state of the art in this field. Our examination of 60 healthy normotensive individuals revealed a distinctive sleep/wake rhythm in limb arterial flow, characterized by elevated values during sleep (32.7% in the forearm, P < 0.0001; 39.1% in the leg, P < 0.0001). Correspondingly, limb resistance mirrored the trend of flow (-32.7%, P < 0.0001; -33.5%, P < 0.0001), with these variations attributed to sleep-induced limb vasodilation. Sleep-associated vasodilation was also evident in 21 hypertensive individuals (leg resistance: -33.1%, P < 0.0001) and 13 heart transplant recipients lacking vagal and sympathetic cardiac innervation (resistance: -33.6%, P < 0.0001). On the contrary, among 11 subjects with an interrupted spinal cord, we observed forearm vasodilation (resistance: -36.6%, P < 0.0001) but observed no leg vasodilation if the spinal lesion was under T2 (innervating the leg). Furthermore, a loss of sleep-induced vasodilation occurred in both the forearm and leg if the injury was above C7 (innervating both forearm and leg). Our conclusion posits the existence of sleep-induced limb vasodilation, a phenomenon attributed to signals traveling along the spinal cord, with the heart playing no discernible role in this rhythmic process, and arterial hypertension deemed irrelevant. Comprehensive further studies are imperative to elucidate the precise triggers of limb vasodilation during sleep.

Arterial flow
Peripheral resistance
Sleep-induced vasodilation
Strain-gauge plethysmography
24-h continuous monitoring
Spinal cord injury
Heart transplant
  1. Braghiroli A, Braido F, Piraino A, et al. Day and night control of COPD and role of pharmacotherapy: A review. Int J Chron Obstruct Pulmon Dis. 2020;15:1269-1285. doi: 10.2147/COPD.S240033


  1. Celik H, Gurates B, Parmaksiz C, et al. Severity of pain and circadian changes in uterine artery blood flow in primary dysmenorrhea. Arch Gynecol Obstet. 2009;280:589-592. doi: 10.1007/s00404-009-0966-7


  1. Diamant M, Harms MPM, Immink RV, et al. Twenty-four-hour non-invasive monitoring of systemic haemodynamics and cerebral blood flow velocity in healthy humans. Acta Physiol Scand. 2002;175:1-9. doi: 10.1046/j.1365-201X.2002.00953.x


  1. Fukami M, Iwase T, Yamamoto K, et al. Diurnal variation of pulse waveform parameters determined by laser speckle flowgraphy on the optic nerve head in healthy subjects. Medicine (Baltimore). 2017;96(44):e8312. doi: 10.1097/MD.0000000000008312


  1. Lemmer B, Nold G. Circadian changes in estimated hepatic blood flow in healthy subjects. Br J Clin Pharmacol. 1991;32:627-629. doi: 10.1111/j.1365-2125.1991.tb03964.x


  1. Wauschkuhn CA, Witte K, Gorbey S, Lemmer B, Schilling L. Circadian periodicity of cerebral blood flow revealed by LASER-Doppler flowmetry in awake rats: Relation to blood pressure and activity. Am J Physiol Heart Circ Physiol. 2005;289(4):H1662-1668. doi: 10.1152/ajpheart.01242.2004


  1. Werne A, Harris A, Moore D, BenZion I, Siesky B. The circadian variations in systemic blood pressure, ocular perfusion pressure, and ocular blood flow: Risk factors for glaucoma? Surv Ophthalmol. 2008;53:559-567. doi: 10.1016/j.survophthal.2008.08.021


  1. Pickering TG, James GD. Determinants and consequences of the diurnal rhythm of blood pressure. Am J Hypertens. 1993;6:166S-169S. doi: 10.1093/ajh/6.6.166s


  1. Zeeh J, Lange H, Bosch J, et al. Steady-state extrarenal sorbitol clearance as a measure of hepatic plasma flow. Gastroenterology. 1988;95:749-759. doi: 10.1016/s0016-5085(88)80024-6


  1. Thurau K, Kramer K. Weitere Untersuchungen zur myogen Natur der Autoregolation des Nierenkreislaufes. [Further studies on the myogenic nature of autoregulation of kidney blood circulation; suppression of autoregulation by musculotropic substances and the pressure passive behavior of glomerulus filtrate]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1959;269:77-93. doi: 10.1007/BF00362973


  1. Smith HW. The Kidney: Structure and Function in Health and Diseased. New York: Oxford University Press; 1991.


  1. Mormino P, Palatini P, Di Marco A, et al. Computer analysis of continuous direct blood pressure recording. Clin Exp Hypertens A. 1985;7:455-461. doi: 10.3109/10641968509073572


  1. Palatini P, Pessina AC, Casiglia E, et al. Evaluation of blood pressure control after bilateral glomectomy: Effects of propranolol treatment. Clin Physiol Biochem. 1987;5:320-328.


  1. Palatini P, Pessina AC, Semplicini A, Moramio P, Casiglia E, Dal Palù C. Analisi della variabilità della pressione arteriosa in pazienti con ipertensione labile e stabile e modificazioni indotte dall’atenololo. [Analysis of the variability of arterial pressure in patients with labile and stable hypertension and changes induced with atenolol]. G Ital Cardiol. 1980;10:301-308.


  1. Palatini P, Reboldi G, Beilin LJ, et al. Added predictive value of night-time blood pressure variability for cardiovascular events and mortality: The Ambulatory Blood Pressure- International Study. Hypertension. 2014;64:487-493. doi: 10.1161/HYPERTENSIONAHA.114.03694


  1. Casiglia E, Tikhonoff V, Albertini F, Palatini P. Poor reliability of wrist blood pressure self-measurement at home: A population-based study. Hypertension. 2016;68:896-903. doi: 10.1161/HYPERTENSIONAHA.116.07961


  1. Cheng YB, Thijs L, Zhang ZY, et al. Outcome-driven thresholds for ambulatory blood pressure based on the new American College of Cardiology/American Heart Association classification of hypertension. Hypertension. 2019;74:776-783. doi: 10.1161/HYPERTENSIONAHA.119.13512


  1. Palatini P, Penzo M, Canali C, Pessina AC. Validation of the A&D TM-2420 Model 7 for ambulatory blood pressure monitoring and effect of microphon replacement on its performance. J Ambulat Monit. 1991;4:281-288.


  1. Palatini P, Saladini F, Mos L, Fania C, Mazzer A, Casiglia E. Clinical characteristics and risk of hypertension needing treatment in young patients with systolic hypertension identified with ambulatory monitoring. J Hypertens. 2018;36:1810-1815. doi: 10.1097/HJH.0000000000001754


  1. Pickering TG, Shimbo D, Haas D. Ambulatory blood-pressure monitoring. N Engl J Med. 2006;354:2368-2374. doi: 10.1056/NEJMra060433


  1. Hertel RF. Daily pattern of skin microcirculation in conscious laboratory rats. Naturwissenschaften. 1987;74:597-599. doi: 10.1007/BF00368521


  1. Kety SS. Measurement of regional circulation by the local clearance of radioactive sodium. Am Heart J. 1949;38:321-328. doi: 10.1016/0002-8703(49)90845-5


  1. Bojsen J, Staberg B, Kølendorf K. Subcutaneous measurements of 133Xe disappearance with portable CdTe(Cl) detectors: Elimination of interference from combined convection and diffusion. Clin Physiol. 1984;4:309-320. doi: 10.1111/j.1475-097x.1984.tb00806.x


  1. Sejrsen P. Blood flow in cutaneous tissue in man studied by washout of radioactive xenon. Circ Res. 1969;25:215-229. doi: 10.1161/01.res.25.2.215


  1. Sindrup JH, Kastrup J, Christensen H, Jørgensen B. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans. Am J Physiol. 1991;261:982-988. doi: 10.1152/ajpheart.1991.261.4.H982


  1. Jelnes R, Bülow J. Evaluation of a method for determination of the subcutaneous blood flow in the forefoot continuously over 24 h. Scand J Clin Lab Invest. 1984;44:85-90. doi: 10.3109/00365518409083791


  1. Sindrup JH, Persen LJ, Madsen SM, Kristensen JK, Kastrup J. Nocturnal temperature and subcutaneous blood flow in humans. Clin Physiol. 1995;15:611-622. doi: 10.1111/j.1475-097x.1995.tb00548.x


  1. Marsh DJ, Osborn JL, Cowley AW Jr. 1/f fluctuations in arterial pressure and regulation of renal blood flow in dogs. Am J Physiol. 1990;258:F1394-1400. doi: 10.1152/ajprenal.1990.258.5.F1394


  1. Sigdell JE. Venous occlusion plethysmography. Part 2: Methods. Biomed Eng. 1975;10:342-345.


  1. Fields DA, Higgins PB, Radley D. Air-displacement plethysmography: here to stay. Curr Opin Clin Nutr Metab Care. 2005;8:624-629. doi: 10.1097/01.mco.0000171127.44525.07


  1. Zajic F, Fejfar Z, Franc L, Brod J. Impedance plethysmography. Chekh Fiziol. 1954;3:355-361.


  1. Yilmaz G, Ong JL, Ling LH, Chee MWL. Insights into vascular physiology from sleep photoplethysmography. Sleep. 2023;46:zsad172. doi: 10.1093/sleep/zsad172


  1. Casiglia E, Staessen J Ginocchio G, et al. Characterisation of hypertensive patients according to 24 h peripheral resistance. Jpn Heart J. 1998;39:355-362. doi: 10.1536/ihj.39.355


  1. Casiglia E, Pavan L, Marcato L, et al. Subjects with obstructive pulmonary disease tend to be chronically vasodilated. Clin Sci. 1998;95:287-294.


  1. Mozzato MG, Buzzaccarini F, Casolino P, et al. Plethysmographic effects of doxazosin in essential hypertensives. J Hypertens. 1989;7(Suppl.6):S290-291. doi: 10.1097/00004872-198900076-00141


  1. Casiglia E, Mazza A, Ginocchio G, et al. Haemodynamics following real and hypnosis-simulated phlebotomy. Am J Clin Hypn. 1997;4:368-375.


  1. Casiglia E, Rempelou P, Tikhonoff V, et al. Hypnotic focused analgesia obtained through body dysmorphism prevents both pain and its cardiovascular effects. Sleep Hypnosis. 2018;19:89-95.


  1. Casiglia E, Rossi AM, Tikhonoff V, et al. Local and systemic vasodilation following hypnotic suggestion of warm tub bathing. Int J Psychophysiol. 2006;62:60-65. doi: 10.1016/j.ijpsycho.2006.01.012


  1. Casiglia E, Schiavon L, Tikhonoff V, et al. Hypnosis prevents the cardiovascular response to cold pressor test. Am J Clin Hypn. 2007:49:255-266. doi: 10.1080/00029157.2007.10524503


  1. Casiglia E, Tikhonoff V, Giordano N, et al. Measured outcomes with hypnosis as an experimental tool in a cardiovascular physiology laboratory. Int J Clin Exp Hypn. 2012;60:241-261. doi: 10.1080/00207144.2012.648078


  1. Casiglia E, Tikhonoff V, Giordano N, et al. Relaxation versus fractionation as hypnotic deepening: do they differ in physiological changes? Int J Clin Exp Hypn. 2012;60:338-355. doi: 10.1080/00207144.2012.675297


  1. Casiglia E, Gava R, Maddalena F, et al. Valutazione indiretta del flusso arterioso segmentale e delle resistenze periferiche: Aggiornamento metodologico. [Indirect evaluation of segmental arterial flow and peripheral resistance: Methodological update]. Basi Raz Ter. 1986;16:169-171.


  1. Clark S, Fowlie S, Coats S, et al. Ambulatory blood pressure monitoring: Validation of the accuracy and reliability of the TM-2420 according to the AAMI recommendations. J Hum Hypertens. 1991;5:77-82.


  1. Conway J. Bench and ambulatory field evaluation of the A&D TM-2420 automated sphygmomanometer. J Hypertens. 1991;9:577-578. doi: 10.1097/00004872-199106000-00019


  1. Boehlert SJ, Moucha OP, Pickering TG. Validation study of the Takeda TM-2420 ambulatory blood pressure monitoring. Am J Hypert. 1990;258:1390-1400.


  1. Casiglia E, Palatini P, Baccilieri MS, et al. Circadian rhthm of peripheral resistance: A non-invasive 24-hour study in young normal volunteers confined to bed. High Blood Press. 1992;1:249-155.


  1. Casiglia E. Vascular mechanisms of blood pressure rhythms. Ann N Y Acad Sci. 1996;783:84-94. doi: 10.1111/j.1749-6632.1996.tb26709.x


  1. Casiglia E, Palatini P, Colangeli G, et al. 24 h rhythm of blood pressure and forearm peripheral resistance in normotensive and hypertensive subjects confined to bed. J Hypertens. 1996;14:47-52.


  1. Casiglia E, Pizziol A, Tikhonoff V, et al. The 24-hour rhythm of blood pressure differs from that of leg hemodynamics in orhotopic heart tranaplant recipients. Am Heart J. 2000;140:941-944. doi: 10.1067/mhj.2000.111110


  1. Casiglia E, Palatini P, Ginocchio G, et al. Leg versus forearm flow: 24 h monitoring in 14 normotensive subjects and in 14 age-matched hypertensive patients confined to bed. Am J Hypertens. 1998;11:190-195. doi: 10.1016/S0895-7061(97)00317-8


  1. Reeves RA, Shapiro AP, Thompson ME, et al. Loss of nocturnal decline in blood pressure after cardiac transplantation. Circulation. 1986;73:401-408. doi: 10.1161/01.cir.73.3.401


  1. Idema RN, van den Meiracker AH, Balk AH, et al. Abnormal diurnal variation of blood pressure, cardiac output and vascular resistance in cardiac transplant recipients. Circulation. 1994;90:2797-2803. doi: 10.1161/01.cir.90.6.2797


  1. Braunwald E. Innervation of the transplanted heart. N Engl J Med. 1969;9:848-849. doi: 10.1056/NEJM196910092811511


  1. Shumway NE, Lower RR, Stoffer RC. Transplantation of the heart. Adv Surg. 1966;2:265-284.


  1. Fujita T, Kitani Y, Nakamura T, Kimura T. Effect of chemical sympathectomy on muscle blood flow. Anesth Analg. 1977;56:653-660. doi: 10.1213/00000539-197709000-00011


  1. Ley Pozo J, Vega Gomez ME, Ochoa Bizet M, et al. Evaluation de los risultados de la simpatectomia lumbar mediante variables hemodinamicas. [Evaluation of results of lumbar sympathectomy by means of haemodynamic variables]. Angiologia. 1990;42:66-70.


  1. Rordam P, Olesen HL, Sindrup J, Secher NH. Effect of epidural anaesthesia on dorsal pedis arterial diameter and blood flow. Clin Physiol. 1995;15:143-149. doi: 10.1111/j.1475-097x.1995.tb00438.x


  1. Casiglia E. Pizziol A, Piacentini F, et al. 24-hour leg and forearm haemodynamics in transected spinal cord subjects. Cardiovasc Res. 1999;41:312-316. doi: 10.1016/s0008-6363(98)00237-5


  1. Okada H, Iwase S, Mano T, et al. Changes in anaesthesia on dorsal pedis arterial diameter and blood flow. Clin muscle sympathetic nerve activity during sleep in humans. Neurology. 1991;41:1961-1966.


  1. Hornyak M, Cejnar M, Elam M, Matousek M, Wallin BG. Sympavariation in subcutaneous blood flow-rate in lower leg of normal thetic muscle nerve activity during sleep in man. Brain. 1991;114:1281-1295. doi: 10.1093/brain/114.3.1281


  1. Dooley DM, Kasprak M. Modification of blood flow to the extremities by electrical stimulation of the nervous system. South Med J. 1976;69:1309-1311. doi: 10.1097/00007611-197610000-00017


  1. Cook AW, Oygar A, Baggestons P, Pacheco S, Kleriga E. Vascular disease of the extremities: Electrical stimulation of the spinal cord disease of the extremities: Electrical stimulation of the spinal cord and the posterior roots. N J State Med. 1976;76:366-368.


  1. Panza JA, Epstein SE, Quyyumi AA. Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med. 1991;325:986-990. doi: 10.1056/NEJM199110033251402


  1. Klein WM, Bartels LW, Bax L, van der Graaf Y, Th M Mali WP. Magnetic resonance imaging measurement of blood volume flow in peripheral arteries in healthy subjects. J Vasc Surg. 2003;38:1060-1066. doi: 10.1016/s0741-5214(03)00706-7


  1. Langan EA, Bayer A, Burmeister J, et al. Class I compression therapy improves lower limb vascular flow volume in patients with chronic venous insufficiency – a magnetic resonance imaging study. J Dtsch Dermatol Ges. 2022;20:508-510. doi: 10.1111/ddg.14672


  1. Okamoto-Mizuno K, Mizuno K. Effects of thermal environment on sleep and circadian rhythm. J Physiol Anthropol. 2012;31:14. doi: 10.1186/1880-6805-31-14
Conflict of interest
The authors declare that they have no competing interests.
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing