AccScience Publishing / ARNM / Online First / DOI: 10.36922/ARNM025480061
REVIEW ARTICLE

CXCR4-targeted theranostics in non-Hodgkin lymphoma: Present evidence and future directions

Marcus Yoakam1 Uma A. Obalapuram1 Kameron Hahn1 Samir Dalia2*
Show Less
1 Department of Medical Education, College of Osteopathic Medicine, Kansas City University, Joplin, Missouri, United States of America
2 Department of Medical Oncology, Mercy Hospital, Joplin, Missouri, United States of America
Received: 30 November 2025 | Revised: 19 December 2025 | Accepted: 9 January 2026 | Published online: 27 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Non-Hodgkin lymphoma (NHL) is a biologically heterogeneous group of lymphoid malignancies with variable clinical outcomes despite advances in chemotherapy, immunotherapy, and cellular therapies. The C–X–C chemokine receptor 4 (CXCR4)/ C–X–C motif chemokine ligand 12 (CXCL12) axis plays a central role in lymphocyte trafficking, survival, and tumor microenvironment interactions. It is frequently dysregulated in NHL, making it an attractive target for precision oncology. CXCR4- directed theranostics combines molecular imaging and targeted radionuclide therapy, enabling real-time assessment of receptor expression, patient stratification, and personalized treatment delivery. Diagnostic positron emission tomography imaging using 68Ga-pentixafor reliably visualizes CXCR4-expressing disease, while therapeutic agents, such as 177Lu- or 90Y-pentixather and CXCR4-targeted antibody– drug conjugates demonstrate selective tumor targeting and potent cytotoxicity in preclinical and early clinical studies. Despite promising antitumor activity and manageable toxicity, several challenges remain, including heterogeneous and dynamically regulated CXCR4 expression, protective microenvironmental niches, hematologic toxicity, radiopharmaceutical limitations, and infrastructural requirements for widespread clinical implementation. Ongoing research is focused on optimizing dosing, refining patient selection, combining CXCR4-targeted therapies with other modalities, and expanding clinical trials to establish efficacy and safety. CXCR4 theranostics holds substantial potential to improve precision management of NHL by integrating diagnostic and therapeutic modalities into a unified, patient-tailored approach.

Keywords
Thernostics/Theragnostics
C–X–C chemokine receptor 4
Non-Hodgkin lymphoma
68Ga-pentaxifor
177Lu-pentixather
Radioligand therapy
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non- Hodgkin lymphoma. Lancet. 2017;390(10091):298-310. doi: 10.1016/S0140-6736(16)32407-2

 

  1. Lewis WD, Lilly S, Jones KL. Lymphoma: Diagnosis and treatment. Am Fam Physician. 2020;101(1):34-41.

 

  1. Stegemann M, Denker S, Schmitt CA. DLBCL 1L-what to expect beyond R-CHOP? Cancers (Basel). 2022;14(6):1453. doi: 10.3390/cancers14061453

 

  1. Susanibar-Adaniya S, Barta SK. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am J Hematol. 2021;96(5):617-629. doi: 10.1002/ajh.26151

 

  1. Crombie JL, Jun MP, Wang T, et al. Real-world outcomes with novel therapies in R/R DLBCL. J Clin Oncol. 2023;41(16_suppl):7552. doi: 10.1200/JCO.2023.41.16_suppl.7552

 

  1. Silkenstedt E, Salles G, Campo E, Dreyling M. B-cell non- Hodgkin lymphomas. Lancet. 2024;403(10438):1791-1807. doi: 10.1016/S0140-6736(23)02705-8

 

  1. Rivero A, Mozas P, Magnano L, López-Guillermo A. Novel targeted drugs for follicular and marginal zone lymphoma: A comprehensive review. Front Oncol. 2023;13:1170394. doi: 10.3389/fonc.2023.1170394

 

  1. Pytlik R, Polgarova K, Karolova J, Klener P. Current immunotherapy approaches in Non-Hodgkin lymphomas. Vaccines (Basel). 2020;8(4):708. doi: 10.3390/vaccines8040708

 

  1. Huang J, Huang X, Huang J. CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Front Immunol. 2022;13:1019115. doi: 10.3389/fimmu.2022.1019115

 

  1. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The chemokine SDF-1 Is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med. 1997;185(1):111-120. doi: 10.1084/jem.185.1.111

 

  1. Christopher MJ, Liu F, Hilton MJ, Long F, Link DC. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood. 2009;114(7):1331-1339. doi: 10.1182/blood-2008-10-184754

 

  1. Bai Z, Hayasaka H, Kobayashi M, et al. CXC chemokine ligand 12 promotes CCR7-dependent naive T cell trafficking to lymph nodes and Peyer’s patches. J Immunol. 2009;182(3):1287-1295. doi: 10.4049/jimmunol.182.3.1287

 

  1. Okada T, Ngo VN, Ekland EH, et al. Chemokine requirements for b cell entry to lymph nodes and Peyer’s patches. J Exp Med. 2002;196(1):65-75. doi: 10.1084/jem.20020201

 

  1. Allen CDC, Ansel KM, Low C, et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol. 2004;5(9):943-952. doi: 10.1038/ni1100

 

  1. Vitiello L, Ferraro E, De Simone S, et al. CXCL12 prolongs naive CD4+ T lymphocytes survival via activation of PKA, CREB and Bcl2 and BclXl up-regulation. Int J Cardiol. 2016;224:206-212. doi: 10.1016/j.ijcard.2016.09.007

 

  1. Ganju RK, Brubaker SA, Meyer J, et al. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem. 1998;273(36):23169-23175. doi: 10.1074/jbc.273.36.23169

 

  1. Teixidó J, Martínez-Moreno M, Díaz-Martínez M, Sevilla- Movilla S. The good and bad faces of the CXCR4 chemokine receptor. Int J Biochem Cell Biol. 2018;95:121-131. doi: 10.1016/j.biocel.2017.12.018

 

  1. Bertolini F, Dell’Agnola C, Mancuso P, et al. CXCR4 neutralization, a novel therapeutic approach for Non- Hodgkin’s lymphoma1. Cancer Res. 2002;62(11):3106-3112.

 

  1. Chen J, Xu-Monette ZY, Deng L, et al. Dysregulated CXCR4 expression promotes lymphoma cell survival and independently predicts disease progression in germinal center B-cell-like diffuse large B-cell lymphoma. Oncotarget. 2015;6(8):5597-5614. doi: 10.18632/oncotarget.3343

 

  1. Zhang YA, Yang X, Yao J, Ren Y, Liu P. Identification of CXCR4 upregulation in diffuse large B-cell lymphoma associated with prognostic significance and clinicopathological characteristics. Dis Markers. 2022;2022:3276925. doi: 10.1155/2022/3276925

 

  1. Pan Q, Luo Y, Zhang Y, et al. Preliminary evidence of imaging of chemokine receptor-4-targeted PET/CT with [68Ga]pentixafor in non-Hodgkin lymphoma: Comparison to [18F]FDG. EJNMMI Res. 2020;10(1):89. doi: 10.1186/s13550-020-00681-7

 

  1. Kosmala A, Duell J, Schneid S, et al. Chemokine receptor-targeted PET/CT provides superior diagnostic performance in newly diagnosed marginal zone lymphoma patients: A head-to-head comparison with [18F]FDG. Eur J Nucl Med Mol Imaging. 2024;51(3):749-755. doi: 10.1007/s00259-023-06489-6

 

  1. Hameed MY, Gul M, Chaudhry A, et al. From oncogenesis to theranostics: The transformative role of PSMA in prostate cancer. Cancers (Basel). 2024;16(17):3039. doi: 10.3390/cancers16173039

 

  1. Iravani A, Violet J, Azad A, Hofman MS. Lutetium-177 prostate-specific membrane antigen (PSMA) theranostics: Practical nuances and intricacies. Prostate Cancer Prostatic Dis. 2020;23(1):38-52. doi: 10.1038/s41391-019-0174-x

 

  1. Sellmyer MA, Lee IK, Mankoff DA. Building the bridge: Molecular imaging biomarkers for 21st century cancer therapies. J Nucl Med. 2021;62(12):1672-1676. doi: 10.2967/jnumed.121.262484

 

  1. Zhang S, Wang X, Gao X, et al. Radiopharmaceuticals and their applications in medicine. Sig Transduct Target Ther. 2025;10(1):1. doi: 10.1038/s41392-024-02041-6

 

  1. Bogdanovic B, Hugonnet F, Montemagno C. Theranostics in hematological malignancies: Cutting-edge advances in diagnosis and targeted therapy. Cancers (Basel). 2025;17(7):1247. doi: 10.3390/cancers17071247

 

  1. Parakh S, Lee ST, Gan HK, Scott AM. Radiolabeled antibodies for cancer imaging and therapy. Cancers (Basel). 2022;14(6):1454. doi: 10.3390/cancers14061454

 

  1. Chen Z, Xue Q, Yao S. Nuclear medicine application of pentixafor/pentixather targeting CXCR4for imaging and therapy in related disease. Mini Rev Med Chem. 2023;23(7):787-803. doi: 10.2174/1389557523666221216095821

 

  1. Lindenberg L, Ahlman M, Lin F, Mena E, Choyke P. Advances in PET imaging of the CXCR4 receptor: [68Ga] Ga-PentixaFor. Semin Nucl Med. 2024;54(1):163-170. doi: 10.1053/j.semnuclmed.2023.09.002

 

  1. Buck AK, Haug A, Dreher N, et al. Imaging of C-X-C motif chemokine receptor 4 expression in 690 patients with solid or hematologic neoplasms using 68Ga-pentixafor PET. J Nucl Med. 2022;63(11):1687-1692. doi: 10.2967/jnumed.121.263693

 

  1. Chavoshi M, Mirshahvalad SA, Kohan A, et al. CXCR4- targeted PET imaging in hematologic malignancies: A systematic review and meta-analysis. Clin Nucl Med. 2025;50(1):e7-e16. doi: 10.1097/RLU.0000000000005426

 

  1. Mayerhoefer ME, Raderer M, Weber M, et al. 68Ga-pentixafor PET/MRI for treatment response assessment in mantle cell lymphoma: Comparison between changes in lesion CXCR4 expression on PET and lesion size and diffusivity on MRI. Clin Nucl Med. 2023;48(7):557-562. doi: 10.1097/RLU.0000000000004638

 

  1. Wang W, Huang M, Tian R, Shen G. Head-to-head comparison of 68Ga-PentixaFor PET/CT and FDG PET/CT for detecting hematologic and solid cancers: A systematic review and meta-analysis. AJR Am J Roentgenol. 2025;225(2):e2532708. doi: 10.2214/AJR.25.32708

 

  1. Albano D, Dondi F, Bertagna F, Treglia G. The role of [68Ga]Ga-Pentixafor PET/CT or PET/MRI in lymphoma: A systematic review. Cancers (Basel). 2022;14(15):3814. doi: 10.3390/cancers14153814

 

  1. Buck AK, Serfling SE, Kraus S, et al. Theranostics in hematooncology. J Nucl Med. 2023;64(7):1009-1016. doi: 10.2967/jnumed.122.265199

 

  1. Schottelius M, Osl T, Poschenrieder A, et al. [177Lu] pentixather: Comprehensive preclinical characterization of a first CXCR4-directed endoradiotherapeutic agent. Theranostics. 2017;7(9):2350-2362. doi: 10.7150/thno.19119

 

  1. Rahimian S, Najafi H, Doroudian M. CXCR4-targeted theranostics in acute leukemia: Disrupting leukemic cell-microenvironment interactions with pentixafor and pentixather. Med Oncol. 2025;42(9):402. doi: 10.1007/s12032-025-02924-w

 

  1. Habringer S, Lapa C, Herhaus P, et al. Dual targeting of acute leukemia and supporting niche by CXCR4-directed theranostics. Theranostics. 2018;8(2):369-383. doi: 10.7150/thno.21397

 

  1. Hänscheid H, Schirbel A, Hartrampf P, et al. Biokinetics and dosimetry of [177Lu]Lu-pentixather. J Nucl Med. 2022;63:754-760. doi: 10.2967/jnumed.121.262295

 

  1. Mulita A, Valsamaki P, Bekou E, et al. Benefits from 18F-FDG PET-CT-based radiotherapy planning in stage III non-small-cell lung cancer: A prospective single-center study. Cancers (Basel). 2025;17(12):1969. doi: 10.3390/cancers17121969

 

  1. Braitsch K, Lorenzini T, Hefter M, et al. CXCR4-directed endoradiotherapy with [177Lu]Pentixather added to total body irradiation for myeloablative conditioning in patients with relapsed/refractory acute myeloid leukemia. Theranostics. 2025;15(1):19-29. doi: 10.7150/thno.101215

 

  1. Buck AK, Serfling SE, Lindner T, et al. CXCR4-targeted theranostics in oncology. Eur J Nucl Med Mol Imaging. 2022;49(12):4133-4144. doi: 10.1007/s00259-022-05849-y

 

  1. Duell J, Buck AK, Hartrampf PE, et al. Chemokine receptor PET/CT provides relevant staging and management changes in marginal zone lymphoma. J Nucl Med. 2023;64(12):1889-1894. doi: 10.2967/jnumed.123.266074

 

  1. Lapa C, Hänscheid H, Kircher M, et al. Feasibility of CXCR4- directed radioligand therapy in advanced diffuse large B-cell lymphoma. J Nucl Med. 2019;60(1):60-64. doi: 10.2967/jnumed.118.210997

 

  1. Dreher N, Dörrler AL, Kraus S, et al. C-X-C motif chemokine receptor 4-targeted radioligand therapy in hematological malignancies-myeloablative effects, antilymphoma activity, and safety profile. Clin Nucl Med. 2024;49(2):146-151. doi: 10.1097/RLU.0000000000004974

 

  1. Farasat M, Saeedi B, Wharton L, et al. Novel Direct Alpha Spectroscopy Technique for $^{225}$Ac Radiopharmaceutical Detection in Cancer Cells. arXiv. Preprint Posted Online; 2025. doi: 10.48550/ARXIV.2501.10608

 

  1. Beider K, Ribakovsky E, Abraham M, et al. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clin Cancer Res. 2013;19(13):3495-3507. doi: 10.1158/1078-0432.CCR-12-3015

 

  1. Martino EA, Bruzzese A, Labanca C, et al. Investigational CXCR4 inhibitors in early phase development for the treatment of hematological malignancies. Expert Opin Investig Drugs. 2024;33(9):915-924. doi: 10.1080/13543784.2024.2388567

 

  1. Cancilla D, Rettig MP, DiPersio JF. Targeting CXCR4 in AML and ALL. Front Oncol. 2020;10:1672. doi: 10.3389/fonc.2020.01672

 

  1. Costa MJ, Kudaravalli J, Ma JT, et al. Optimal design, anti-tumour efficacy and tolerability of anti-CXCR4 antibody drug conjugates. Sci Rep. 2019;9(1):2443. doi: 10.1038/s41598-019-38745-x

 

  1. Recasens-Zorzo C, Cardesa-Salzmann T, Petazzi P, et al. Pharmacological modulation of CXCR4 cooperates with BET bromodomain inhibition in diffuse large B-cell lymphoma. Haematologica. 2019;104(4):778-788. doi: 10.3324/haematol.2017.180505

 

  1. Fath MA, Liu D, Ewald JT, et al. Chemokine receptor CXCR4 radioligand targeted therapy using 177Lutetium-pentixather for pulmonary neuroendocrine cancers. Radiat Res. 2024;201(1):35-47. doi: 10.1667/RADE-23-00064.1

 

  1. Mulita F, Verras GI, Anagnostopoulos CN, Kotis K. A smarter health through the internet of surgical things. Sensors (Basel). 2022;22(12):4577. doi: 10.3390/s22124577

 

  1. Albino de Queiroz D, André da Costa C, Aparecida Isquierdo Fonseca de Queiroz E, Folchini da Silveira E, da Rosa Righi R. Internet of things in active cancer treatment: A systematic review. J Biomed Inform. 2021;118:103814. doi: 10.1016/j.jbi.2021.103814

 

  1. Martin M, Mayer IA, Walenkamp AME, Lapa C, Andreeff M, Bobirca A. At the bedside: Profiling and treating patients with CXCR4-expressing cancers. J Leukoc Biol. 2021;109(5):953-967. doi: 10.1002/JLB.5BT1219-714R

 

  1. Etrych T, Braunova A, Zogala D, Lambert L, Renesova N, Klener P. Targeted drug delivery and theranostic strategies in malignant lymphomas. Cancers (Basel). 2022;14(3):626. doi: 10.3390/cancers14030626

 

  1. Maurer S, Herhaus P, Lippenmeyer R, et al. Side effects of CXC-chemokine receptor 4-directed endoradiotherapy with pentixather before hematopoietic stem cell transplantation. J Nucl Med. 2019;60(10):1399-1405. doi: 10.2967/jnumed.118.223420

 

  1. Yang T, Shi D, Lin Q, et al. Synthesis, screening, and evaluation of theranostic molecular CPCR4-based probe targeting CXCR4. Mol Pharmaceutics. 2024;21(5):2415-2424. doi: 10.1021/acs.molpharmaceut.3c01221

 

  1. Buck AK, Stolzenburg A, Hänscheid H, et al. Chemokine receptor – Directed imaging and therapy. Methods. 2017;130:63-71. doi: 10.1016/j.ymeth.2017.09.002
Share
Back to top
Advances in Radiotherapy & Nuclear Medicine, Electronic ISSN: 2972-4392 Print ISSN: 3060-8554, Published by AccScience Publishing