Nanostructured materials as potent platforms for cancer chemoimmunotherapy

Combinatorial chemoimmunotherapy has emerged as a potent approach in cancer treatment, offering the advantages of combining two treatment strategies (i.e., chemotherapy and immunotherapy), thereby reducing drug dosages and improving therapeutic outcomes. Nanomaterial-assisted drug delivery systems have garnered significant attention in chemoimmunotherapy for encapsulating and delivering therapeutic agents, as they can simultaneously target both cancer and immune cells, promoting drug accumulation with excellent therapeutic efficacy and minimal toxic side effects. This mini-review focuses on various aspects of immunotherapy and chemoimmunotherapy in cancer treatment and discusses several nanomaterial-assisted drug delivery systems used in chemoimmunotherapy.
- Shams F, Golchin A, Azari A, et al. Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep. 2022;49:1389-1412. doi: 10.1007/s11033-021-06876-y
- Yang Z, Ma Y, Zhao H, Yuan Y, Kim BY. Nanotechnology platforms for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;12:e1590. doi: 10.1002/wnan.1590
- Bockamp E, Rosigkeit S, Siegl D, Schuppan D. Nano-enhanced cancer immunotherapy: Immunology encounters nanotechnology. Cells. 2020;9:2102. doi: 10.3390/cells9092102
- Zhang P, Meng J, Li Y, et al. Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation (Camb). 2021;2(4):100174. doi: 10.1016/j.xinn.2021.100174
- Wang J, Li L, Xu ZP. Enhancing cancer chemo-immunotherapy: Innovative approaches for overcoming immunosuppression by functional nanomaterials. Small Methods. 2024;8:e2301005. doi: 10.1002/smtd.202301005
- Akkın S, Varan G, Bilensoy E. A review on cancer immunotherapy and applications of nanotechnology to chemoimmunotherapy of different cancers. Molecules. 2021;26:3382. doi: 10.3390/molecules26113382
- Lang X, Wang X, Han M, Guo Y. Nanoparticle-Mediated synergistic chemoimmunotherapy for cancer treatment. Int J Nanomedicine. 2024;19:4533-4568. doi: 10.2147/IJN.S455213
- Bagherifar R, Kiaie SH, Hatami Z, et al. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: Recent advances and perspectives. J Nanobiotechnology. 2021;19:110. doi: 10.1186/s12951-021-00861-0
- Mu W, Chu Q, Liu Y, Zhang N. A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nanomicro Lett. 2020;12:142. doi: 10.1007/s40820-020-00482-6
- Gupta SL, Basu S, Soni V, Jaiswal RK. Immunotherapy: An alternative promising therapeutic approach against cancers. Mol Biol Rep. 2022;49:9903-9913. doi: 10.1007/s11033-022-07525-8
- Stanley M. Tumour virus vaccines: Hepatitis B virus and human papillomavirus. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160268. doi: 10.1098/rstb.2016.0268
- Kamolratanakul S, Pitisuttithum P. Human papillomavirus vaccine efficacy and effectiveness against cancer. Vaccines (Basel). 2021;9(12):1413. doi: 10.3390/vaccines9121413
- Sutherland SIM, Ju X, Horvath LG, Clark GJ. Moving on from sipuleucel-T: New dendritic cell vaccine strategies for prostate cancer. Front Immunol. 2021;12:641307. doi: 10.3389/fimmu.2021.641307
- Ferrucci PF, Pala L, Conforti F, Cocorocchio E. Talimogene laherparepvec (T-VEC): An intralesional cancer immunotherapy for advanced melanoma. Cancers (Basel). 2021;13(6):1383. doi: 10.3390/cancers13061383
- Du S, Yan J, Xue Y, Zhong Y, Dong Y. Adoptive cell therapy for cancer treatment. Exploration (Beijing). 2023;3:20210058. doi: 10.1002/EXP.20210058
- Lasvergnas J, Naigeon M, Chouahnia K, Zelek L, Chaput N, Duchemann B. Adoptive cell therapies in thoracic malignancies. Cancer Immunol Immunother. 2022;71:2077- 2098. doi: 10.1007/s00262-022-03142-3
- Robert C, Soria JC, Eggermont AMM. Drug of the year: Programmed death-1 receptor/programmed death-1 ligand-1 receptor monoclonal antibodies. Eur J Cancer. 2013;49:2968-2971. doi: 10.1016/j.ejca.2013.07.001
- Dhillon S. Trastuzumab emtansine: A review of its use in patients with HER2-positive advanced breast cancer previously treated with trastuzumab-based therapy. Drugs. 2014;74:675-686. doi: 10.1007/s40265-014-0201-0
- Lin FC, Young HA. Interferons: Success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 2014;25:369-376. doi: 10.1016/j.cytogfr.2014.07.015
- Murer P, Brannetti B, Rondeau JM, et al. Discovery and development of ANV419, an IL-2/anti-IL-2 antibody fusion protein with potent CD8+ T and natural killer cell-stimulating capacity for cancer immunotherapy. MAbs. 2024;16:2381891. doi: 10.1080/19420862.2024.2381891
- Emens LA. Chemoimmunotherapy: Reengineering tumor immunity. J Cancer. 2010;16:295-303. doi: 10.1007/s00262-012-1388-0
- Wang T, Suita Y, Miriyala S, Dean J, Tapinos N, Shen J. Advances in lipid-based nanoparticles for cancer chemoimmunotherapy. Pharmaceutics. 2021;13(4):520. doi: 10.3390/pharmaceutics13040520
- You K, Wang Q, Osman MS, et al. Advanced strategies for combinational immunotherapy of cancer based on polymeric nanomedicines. BMEMat. 2024;2:e12067. doi: 10.1002/bmm2.12067
- Liu S, Li J, Gu L, Wu K, Xing H. Nanoparticles for chemoimmunotherapy against triple-negative breast cancer. Int J Nanomedicine. 2022;17:5209-5227. doi: 10.2147/IJN.S388075
- Mao W, Yoo HS. Inorganic nanoparticle functionalization strategies in immunotherapeutic applications. Biomater Res. 2024;28:0086. doi: 10.34133/bmr.0086
- Zang S, Huang K, Li J, et al. Metabolic reprogramming by dual-targeting biomimetic nanoparticles for enhanced tumor chemo-immunotherapy. Acta Biomater. 2022;148:181-193. doi: 10.1016/j.actbio.2022.05.045
- Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv Transl Res. 2021;11:471-497. doi: 10.1007/s13346-021-00908-7
- Dabholkar N, Waghule T, Rapalli VK, et al. Lipid shell lipid nanocapsules as smart generation lipid nanocarriers. J Mol Liq. 2021;339:117145. doi: 10.1016/j.molliq.2021.117145
- Suzuki Y, Ishihara H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab Pharmacokinet. 2021;41:100424. doi: 10.1016/j.dmpk.2021.100424
- Yong SB, Ramishetti S, Goldsmith M, et al. Dual-targeted lipid nanotherapeutic boost for chemo-immunotherapy of cancer. Adv Mater. 2022;34:e2106350. doi: 10.1002/adma.202106350
- Tan X, Wang C, Zhou H, et al. Bioactive fatty acid analog-derived hybrid nanoparticles confer antibody-independent chemo-immunotherapy against carcinoma. J Nanobiotechnology. 2023;21:183. doi: 10.1186/s12951-023-01950-y
- Wei X, Liu L, Li X, et al. Selectively targeting tumor-associated macrophages and tumor cells with polymeric micelles for enhanced cancer chemo-immunotherapy. J Control Release. 2019;313:42-53. doi: 10.1016/j.jconrel.2019.09.021
- Wei J, Long Y, Guo R, et al. Multifunctional polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer. Acta Pharm Sin B. 2019;9(4):819-831. doi: 10.1016/j.apsb.2019.01.018
- Song J, Cheng M, Xie Y, Li K, Zang X. Efficient tumor synergistic chemoimmunotherapy by self-augmented ROS-responsive immunomodulatory polymeric nanodrug. J Nanobiotechnology. 2023;21:93. doi: 10.1186/s12951-023-01842-1
- Mekonnen TW, Darge HF, Tsai HC, et al. Combination of ovalbumin-coated iron oxide nanoparticles and poly(amidoamine) dendrimer-cisplatin nanocomplex for enhanced anticancer efficacy. Colloids Surf B Biointerfaces. 2022;213:112391. doi: 10.1016/j.colsurfb.2022.112391
- Mittal P, Saharan A, Verma R, et al. Dendrimers: A new race of pharmaceutical nanocarriers. Biomed Res Int. 2021;2021:8844030. doi: 10.1155/2021/8844030
- Song C, Ouyang Z, Liu J, et al. Core-shell tecto dendrimers co-deliver drug/gene for immunomodulation of macrophages and dendritic cells and checkpoint blockade-promoted breast cancer chemoimmunotherapy. Nano Today. 2024;58:102437. doi: 10.1016/j.nantod.2024.102437
- Zhu R, Su L, Dai J, et al. Biologically responsive plasmonic assemblies for second near-infrared window photoacoustic imaging-guided concurrent chemo-immunotherapy. ACS Nano. 2020;14:3991-4006. doi: 10.1021/acsnano.9b07984
- Mu QG, Lin G, Jeon M, et al. Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. Mater Today (Kidlington). 2021;50:149-169. doi: 10.1016/j.mattod.2021.08.002
- Xu HZ, Chen FX, Li K, et al. Anti-lung cancer synergy of low-dose doxorubicin and PD-L1 blocker co-delivered via mild photothermia-responsive black phosphorus. Drug Deliv Transl Res. 2025;15:269-290. doi: 10.1007/s13346-024-01595-w
- Zhao Y, Zheng Y, Zhu Y, Li H, Zhu H, Liu T. Docetaxel-loaded M1 macrophage-derived exosomes for a safe and efficient chemoimmunotherapy of breast cancer. J Nanobiotechnology. 2022;20:359. doi: 10.1186/s12951-022-01526-2
- Wang Y, Xie L, Li X, Wang L, Yang Z. Chemo-immunotherapy by dual-enzyme responsive peptide self-assembling abolish melanoma. Bioact Mater. 2024;31:549-562. doi: 10.1016/j.bioactmat.2023.09.006
- Su L, Hao Y, Li R, et al. Red blood cell-based vaccines for ameliorating cancer chemoimmunotherapy. Acta Biomater. 2022;154:401-411. doi: 10.1016/j.actbio.2022.10.001
- Jiang X, Wu L, Zhang M, et al. Biomembrane nanostructures: Multifunctional platform to enhance tumor chemoimmunotherapy via effective drug delivery. J Control Release. 2023;361:510-533. doi: 10.1016/j.jconrel.2023.08.002
- Wang M, Hu Q, Huang J, et al. Engineered a dual-targeting biomimetic nanomedicine for pancreatic cancer chemoimmunotherapy. J Nanobiotechnology. 2022;20:85. doi: 10.1186/s12951-022-01282-3
- Bao Y, Hu Q, Wang X, et al. Chemo-immunotherapy with doxorubicin prodrug and erythrocyte membrane-enveloped polymer nano-vaccine enhances antitumor activity. Biomed Pharmacother. 2020;129:110377. doi: 10.1016/j.biopha.2020.110377
- Hou T, Wang T, Mu W, et al. Nanoparticle-loaded polarized-macrophages for enhanced tumor targeting and cell-chemotherapy. Nanomicro Lett. 2020;13:6. doi: 10.1007/s40820-020-00531-0
- Zhu W, Bai Y, Zhang N, et al. A tumor extracellular pH-sensitive PD-L1 binding peptide nanoparticle for chemo-immunotherapy of cancer. J Mater Chem B. 2021;9:4201-4210. doi: 10.1039/d1tb00537e