Comparison of different approaches for the computation of biologically effective dose in a non-uniformly irradiated treatment target in stereotactic body radiation therapy
The biologically effective dose (BED) for a non-uniformly irradiated treatment target can be determined using two approaches: averaging BEDs for different voxels in the target and averaging the probability of tumor cell survival in the target. This study compared these approaches for the computation of BED by examining their general properties and comparing BEDs for different treatment plans. The mean BED (BEDmean) determined by averaging BEDs in different parts of the target and BED (BEDnud) determined by averaging the probability of survival were computed for 51 cases of stereotactic body radiation therapy. For each case, two treatment plans were created using dynamic conformal arcs (DCAs) and volumetric modulated arc therapy (VMAT). For the plans with DCAs, the sample mean of BEDmean was 18% > that of BEDnud (for α = 0.35 Gy−1 and α/β =10 Gy). Conversely, for the VMAT plans and the same values of radiobiological parameters, the sample mean of BEDmean was only 5%> that of BEDnud. Theoretically, BEDmean is always ≥BEDnud. When the mean dose in the target is fixed, BEDmean increases with increasing variance of the target dose (σ2). In contrast, BEDnud decreased with increasing σ2. Although BEDnud depends on both alpha and beta parameters for the irradiated malignant cells, BEDmean depends only on the alpha/beta ratio. Thus, the use of BEDmean instead of BEDnud can cause incorrect ranking of treatment plans.
- Graham MV, Purdy JA, Emami B, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999;45(2):323-329. doi: 10.1016/S0360-3016(99)00183-2
- Li XA, Alber M, Deasy JO, et al. The use and QA of biologically related models for treatment planning: Short report of the TG-166 of the therapy physics committee of the AAPM. Med Phys. 2012;39(3):1386-1409. doi: 10.1118/1.3685447
- Nahum AE, Uzan J. (Radio)biological optimization of external-beam radiotherapy. Comput Math Methods Med. 2012;2012:329214. doi: 10.1155/2012/329214
- Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10-S19. doi: 10.1016/j.ijrobp.2009.07.1754
- Bentzen SM, Constine LS, Deasy JO, et al. Quantitative analyses of normal tissue effects in the clinic (QUANTEC): An introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S3-S9. doi: 10.1016/j.ijrobp.2009.09.040
- Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res. 1985;104:S13-S19. doi: 10.2307/3576626
- Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method. Int J Radiat Oncol Biol Phys. 1989;16(6):1623-1630. doi: 10.1016/0360-3016(89)90972-3
- Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109-122. doi: 10.1016/0360-3016(91)90171-Y
- Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys. 2002;53(4):810-821. doi: 10.1016/S0360-3016(02)02846-8
- Seppenwoolde Y, Lebesque JV, de Jaeger K, et al. Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability. Int J Radiat Oncol Biol Phys. 2003;55(3):724-735. doi: 10.1016/S0360-3016(02)03986-X
- Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 1982;8(11):1981-1997. doi: 10.1016/0360-3016(82)90459-X
- Jones B, Dale RG, Deehan C, Hopkins KI, Morgan DA. The Role of Biologically Effective Dose (BED) in clinical oncology. Clin Oncol (R Coll Radiol). 2001;13(2):71-81. doi: 10.1053/clon.2001.9221
- Fowler JF. 21 years of biologically effective dose. Br J Radiol. 2010;83(991):554-568. doi: 10.1259/bjr/31372149
- Barton M. Tables of equivalent dose in 2 Gy fractions: A simple application of the linear quadratic formula. Int J Radiat Oncol Biol Phys. 1995;31(2):371-378. doi: 10.1016/0360-3016(94)e0126-5
- Nahum AE, Sanchez-Nieto B. Tumor control probability modeling: Basic principles and applications in treatment planning. Phys Med. 2001;17(2):13-23.
- Schultheiss TE, Orton CG, Peck RA. Models in radiotherapy: Volume effects. Med Phys. 1983;10(4):410-415. doi: 10.1118/1.595312
- Withers HR, Taylor JM, Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys. 1988;14(4):751-759. doi: 10.1016/0360-3016(88)90098-3
- Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys. 1991;21(1):137-146. doi: 10.1016/0360-3016(91)90173-2
- Jones LC and Hoban PW. Treatment plan comparison using equivalent uniform biologically effective dose (EUBED) Phys Med Biol. 2000;45(1):159-170. doi: 10.1088/0031-9155/45/1/311
- Niemierko A. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med Phys. 1997;24(1):103-110. doi: 10.1118/1.598063
- Lee SP, Leti MY, Smathers JB, McBride WH, Parker RG, Withers HR. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance. Int J Radiat Oncol Biol Phys. 1995;33(2):375-389. doi: 10.1016/0360-3016(95)00162-R
- Wheldon TE, Deehan C, Wheldon EG, Barretta A. The linear-quadratic transformation of dose-volume histograms in fractionated radiotherapy. Radiother Oncol. 1998;46(3):285-295. doi: 10.1016/S0167-8140(97)00162-X
- O’Donoghue JA. Implications of nonuniform tumor doses for radioimmunotherapy. J Nucl Med. 1999;40(8):1337-1341.
- Singh G, Oinam AS, Kamal R, Handa B, Kumar V, Rai B. Voxel based BED and EQD2 evaluation of the radiotherapy treatment plan. J Med Phys. 2018;43(3):155-161. doi: 10.4103/jmp.JMP_29_18
- Varian Medical Systems. Velocity V. 4.1, Instructions for Use. Polo Alto, CA, USA: Varian Medical Systems; 2023.
- RaySearch Laboratories. Biological Models Reference Information, Raystation Reference Manual. Stockholm, Sweden: RaySearch Laboratories; 2024.
- Dale R. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol. 1985;58(690):515-528. doi: 10.1259/0007-1285-58-690-515
- Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J. Radiol. 1989;62(740):679-694. doi: 10.1259/0007-1285-62-740-679
- McMahon SJ. The linear quadratic model: Usage, interpretation and challenges. Phys Med Biol. 2018;64(1):01TR01. doi: 10.1088/1361-6560/aaf26a
- Hawkins RB. Effect of heterogeneous radio sensitivity on the survival, alpha beta ratio and biologic effective dose calculation of irradiated mammalian cell populations. Clin Transl Radiat Oncol. 2017;4:32-38. doi: 10.1016/j.ctro.2017.03.001
- Thames HD. An ‘Incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47(3):319-39. doi: 10.1080/09553008514550461
- Kuperman VY, Spradlin GS. Use of radiation protraction to escalate biologically effective dose to the treatment target. Med Phys. 2011;38(12):6553-6560. doi: 10.1118/1.3656053
- Brenner DJ, Hall EJ. Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys. 1991;20(1):181-190. doi: 10.1016/0360-3016(91)90158-Z
- Fowler JF, Welsh JS, Howard SP. Loss of biological effect in prolonged fraction delivery. Int J Radiat Oncol Biol Phys. 2004;59(1):242-249. doi: 10.1016/j.ijrobp.2004.01.004
- Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys. 2010;37(8):4078-4101. doi: 10.1118/1.3438081
- Porter EH. The statistics of dose/cure relationships for irradiated tumours. Part I. Br J Radiol. 1980;53(627):210-227. doi: 10.1259/0007-1285-53-627-210
- Deasy J. Poisson formulas for tumor control probability with clonogen proliferation Radiat Res. 1996;145(3):382-384. doi: 10.2307/3578994
- Webb S, Evanst PM, Swindell W, Deasy JO. A proof that uniform dose gives the greatest TCP for fixed integral dose in the planning target volume. Phys Med Biol. 1994;39(11):2091-2098. doi: 10.1088/0031-9155/39/11/018
- Drzymala RE, Mohan R, Brewster L, Chu J, Goitein M, Harms W, Urie M. Dose-volume histograms. Int J Radiat Oncol Biol Phys. 1991;21(1):71-78. doi: 10.1016/0360-3016(91)90168-4
- Kuperman VY, Lubich LM. Impact of target dose inhomogeneity on BED and EUD in lung SBRT. Phys Med Biol. 2021;66(1):01NT02. doi: 10.1088/1361-6560/abd0d1
- Shuryak I, Carlson DJ, Brown MJ, Brenner DJ. High-dose and fractionation effects in stereotactic radiation therapy: Analysis of tumor control data from 2965 patients. Radiother Oncol. 2015;115(3):327-334. doi: 10.1016/j.radonc.2015.05.013
- Onishi H, Araki T, Shirato H, et al. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: Clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer. 2004;101(7):1623-1631. doi: 10.1002/cncr.20539
- Guerrero M, Li XA. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol. 2004;49(20):4825-4835. doi: 10.1088/0031-9155/49/20/012
- Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18(4):240-243. doi: 10.1016/j.semradonc.2008.04.005
- Astrahan M. Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation. Med Phys. 2008;35(9):4161-4172. doi: 10.1118/1.2969065
- Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: Useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(3):847-852. doi: 10.1016/j.ijrobp.2007.10.059
- Ruggieri R, Stavrev P, Naccarato S, Stavreva N, Alongi F, Nahum AE. Optimal dose and fraction number in SBRT of lung tumours: A radiobiological analysis. Phys Med. 2017;44:188-195. doi: 10.1016/j.ejmp.2016.12.012
- Armpilia CI, Dale RG, Jones B. Determination of the optimum dose per fraction in fractionated radiotherapy when there is delayed onset of tumour repopulation during treatment. Br J Radiol. 2004;77(921):765-767. doi: 10.1259/bjr/47388747
- Mehta M, Scrimger R, Mackie R, Paliwal B, Chappell R, Fowler J. A new approach to dose escalation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2001;49(1):23-33. doi: 10.1016/S0360-3016(00)01374-2
- Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: Are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys. 2014;88(2):254-262. doi: 10.1016/j.ijrobp.2013.07.022