Applications of radionuclide-carrying liposomes for diagnosis and treatment of cancer
Using nanocapsules to deliver diagnostic and therapeutic agents to targeted biological sites enhances the safety and effectiveness of healthcare by decreasing toxicity and increasing the accumulation of medicinal agents at targeted sites. Liposomes, nanocapsules made of naturally occurring lipids, boast many advantages for the delivery of therapeutic agents. This article reviews both the advantages and challenges associated with liposomal drug delivery for the treatment of cancerous tumors and infectious diseases. These minute spherical sacs of phospholipid molecules are flexible carriers that can be modified in various ways to optimize their use. Examples of this include alteration of the size of liposomes to selectively accumulate in tumor microenvironments and “PEGylation” of their surface to reduce uptake of liposomes by the mononuclear phagocytic system (MPS). While one of the main challenges of liposomal drug delivery is the heightened uptake of liposomes by the MPS, this unique property can be used to target diseased areas with a significant MPS presence. Furthermore, the liposomal structure can be manipulated to allow for the triggered release of internal contents with externally controlled factors. Liposomes carrying therapeutic radionuclides can be injected directly into solid tumors and dispersed throughout the tumor by convection-enhanced delivery. The flexibility and pliability of liposomes allow them to move through tight spaces within a tumor with much greater dispersion and penetration when compared to more rigid nanoparticles. Due to the benefits of radionuclide-carrying liposomes in disease diagnosis and delivery of chemotherapeutic agents, their utilization is expected to be expanded.
- Khan NU, Chengfeng X, Jiang MQ, et al. α-Lactalbumin based scaffolds for infected wound healing and tissue regeneration. Int J Pharm. 2024;663:124578. doi: 10.1016/j.ijpharm.2024.124578
- Khan NU, Chengfeng X, Jiang MQ, et al. Obstructed vein delivery of ceftriaxone via poly(vinyl-pyrrolidone)- iodine-chitosan nanofibers for the management of diabetic foot infections and burn wounds. Int J Biol Macromol. 2024;277:134166. doi: 10.1016/j.ijbiomac.2024.134166
- Park H, Otte A, Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J Control Release. 2022;342:53-65. doi: 10.1016/j.jconrel.2021.12.030
- Coelho JF, Ferreira PC, Alves P, et al. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J. 2010;1(1):164-209. doi: 10.1007/s13167-010-0001-x
- Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975-999. doi: 10.2147/ijn.S68861
- Gu W, Andrews GP, Tian Y. Recent clinical successes in liposomal nanomedicines. Int J Drug Discov Pharmacol. 2023;2(1):52-59. doi: 10.53941/ijddp.0201009
- He H, Yuan D, Wu Y, Cao Y. Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs. Pharmaceutics. 2019;11(3):110. doi: 10.3390/pharmaceutics11030110
- Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. doi: 10.1016/j.heliyon.2022.e09394
- Low HY, Yang CT, Xia B, He T, Lam WWC, Ng DCE. Radiolabeled liposomes for nuclear imaging probes. Molecules. 2023;28(9):3798. doi: 10.3390/molecules28093798
- Hagtvet E, Røe K, Olsen DR. Liposomal doxorubicin improves radiotherapy response in hypoxic prostate cancer xenografts. Radiat Oncol. 2011;6:135. doi: 10.1186/1748-717x-6-135
- Head HW, Dodd GD 3rd, Bao A, et al. Combination radiofrequency ablation and intravenous radiolabeled liposomal Doxorubicin: Imaging and quantification of increased drug delivery to tumors. Radiology. 2010;255(2):405-414. doi: 10.1148/radiol.10090714
- Riccardi D, Baldino L, Reverchon E. Liposomes, transfersomes and niosomes: Production methods and their applications in the vaccinal field. J Transl Med. 2024;22(1):339. doi: 10.1186/s12967-024-05160-4
- Shan H, Sun X, Liu X, et al. One‐step formation of targeted liposomes in a versatile microfluidic mixing device. Small. 2022;19(7):e2205498. doi: 10.1002/smll.202205498
- Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136-151. doi: 10.1016/j.addr.2010.04.009
- Fulton MD, Najahi-Missaoui W. Liposomes in cancer therapy: How did we start and where are we now. Int J Mol Sci. 2023;24(7):6615. doi: 10.3390/ijms24076615
- Man F, Gawne PJ, de Rosales RTM. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev. 2019;143:134-160. doi: 10.1016/j.addr.2019.05.012
- Goins B, Bao A, Phillips WT. Techniques for loading technetium-99m and rhenium186/188 radionuclides into preformed liposomes for diagnostic imaging and radionuclide therapy. Methods Mol Biol. 2017;1522:155-178. doi: 10.1007/978-1-4939-6591-5_13
- Poletto G, Evangelista L, Venturini F, et al. Nanoparticles and radioisotopes: A long story in a nutshell. Pharmaceutics. 2022;14(10):2024. doi: 10.3390/pharmaceutics14102024
- Li W, Sun D, Li N, Shen Y, Hu Y, Tan J. Therapy of cervical cancer using 131I-labeled nanoparticles. J Int Med Res. 2018;46(6):2359-2370. doi: 10.1177/0300060518761787
- Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4):1372. doi: 10.3390/molecules27041372
- Bao A, Goins B, Klipper R, Negrete G, Phillips WT. 186Re-liposome labeling using 186Re-SNS/S complexes: In vitro stability, imaging, and biodistribution in rats. J Nucl Med. 2003;44(12):1992-1999.
- Goins B, Klipper R, Rudolph AS, Cliff RO, Blumhardt R, Phillips WT. Biodistribution and imaging studies of technetium-99m-labeled liposomes in rats with focal infection. J Nucl Med. 1993;34(12):2160-2168.
- Goins B, Klipper R, Rudolph AS, Phillips WT. Use of technetium-99m-liposomes in tumor imaging. J Nucl Med. 1994;35(9):1491-1498.
- Boerman OC, Rennen H, Oyen WJ, Corstens FH. Radiopharmaceuticals to image infection and inflammation. Semin Nucl Med. 2001;31(4):286-295. doi: 10.1053/snuc.2001.26189
- Phillips WT, Klipper R, Goins B. Use of (99m)Tc-labeled liposomes encapsulating blue dye for identification of the sentinel lymph node. J Nucl Med. 2001;42(3):446-451.
- Zavaleta CL, Goins BA, Bao A, McManus LM, McMahan CA, Phillips WT. Imaging of 186Re-liposome therapy in ovarian cancer xenograft model of peritoneal carcinomatosis. J Drug Target. 2008;16(7):626-637. doi: 10.1080/10611860802230372
- Lobatto ME, Binderup T, Robson PM, et al. Multimodal positron emission tomography imaging to quantify uptake of 89Zr-labeled liposomes in the atherosclerotic vessel wall. Bioconjug Chem. 2019;31(2):360-368. doi: 10.1021/acs.bioconjchem.9b00256
- Jeong HY, Kang SJ, Kim MW, et al. Development of PET radioisotope copper-64-labeled theranostic immunoliposomes for EGFR overexpressing cancer-targeted therapy and imaging. Int J Mol Sci. 2024;25(3):1813. doi: 10.3390/ijms25031813
- Kelly C, Jefferies C, Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:727241. doi: 10.1155/2011/727241
- Umeda IO, Koike Y, Ogata M, et al. New liposome-radionuclide-chelate combination for tumor targeting and rapid healthy tissue clearance. J Control Release. 2023;361:847-855. doi: 10.1016/j.jconrel.2023.07.060
- La-Beck NM, Liu X, Wood LM. Harnessing liposome interactions with the immune system for the next breakthrough in cancer drug delivery. Front Pharmacol. 2019;10:220. doi: 10.3389/fphar.2019.00220
- Li C, Xu X, Wei S, Jiang P, Xue L, Wang J. Tumor-associated macrophages: Potential therapeutic strategies and future prospects in cancer. J Immunother Cancer. 2021;9(1):e001341. doi: 10.1136/jitc-2020-001341
- Andón FT, Digifico E, Maeda A, et al. Targeting tumor associated macrophages: The new challenge for nanomedicine. Semin Immunol. 2017;34:103-113. doi: 10.1016/j.smim.2017.09.004
- Nosova AS, Koloskova OO, Nikonova AA, et al. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. Medchemcomm. 2019;10(3):369-377. doi: 10.1039/c8md00515j
- Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1): 235-237. doi: 10.1016/0014-5793(90)81016-h
- Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: Review of animal and human studies. Clin Pharmacokinet. 2003;42(5): 419-436. doi: 10.2165/00003088-200342050-00002
- Rommasi F, Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2021;16(1):95. doi: 10.1186/s11671-021-03553-8
- Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013;169(1-2):112-125. doi: 10.1016/j.jconrel.2013.03.036
- Stolarz AJ, Chhetri BP, Borrelli MJ, et al. Liposome formulation for tumor-targeted drug delivery using radiation therapy. Int J Mol Sci. 2022;23(19):11662. doi: 10.3390/ijms231911662
- Prabhakar A, Banerjee R. Nanobubble liposome complexes for diagnostic imaging and ultrasound-triggered drug delivery in cancers: A theranostic approach. ACS Omega. 2019;4(13):15567-15580. doi: 10.1021/acsomega.9b01924
- Amirrashedi M, Jensen AI, Tang Q, et al. The influence of size on the intracranial distribution of biomedical nanoparticles administered by convection-enhanced delivery in minipigs. ACS Nano. 2024;18(27):17869-17881. doi: 10.1021/acsnano.4c04159
- Phillips WT, Goins B, Bao A, et al. Rhenium-186 liposomes as convection-enhanced nanoparticle brachytherapy for treatment of glioblastoma. Neuro Oncol. 2012;14(4): 416-425. doi: 10.1093/neuonc/nos060
- Phillips WT, Bao A, Brenner AJ, Goins BA. Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Adv Drug Deliv Rev. 2014;76:39-59. doi: 10.1016/j.addr.2014.07.001
- Christenson C, Wu C, Hormuth DA 2nd, Huang S, Bao A, Brenner A, Yankeelov TE. Predicting the spatio-temporal response of recurrent glioblastoma treated with rhenium-186 labelled nanoliposomes. Brain Multiphys. 2023;5:100084. doi: 10.1016/j.brain.2023.100084
- Wu C, Hormuth DA 2nd, Christenson CD, et al. Image-guided patient-specific optimization of catheter placement for convection-enhanced nanoparticle delivery in recurrent glioblastoma. Comput Biol Med. 2024;179:108889. doi: 10.1016/j.compbiomed.2024.108889
- Brenner A, Michalek J, Moore M, et al. Update report of the RESPECT-GBM phase I/IIA dose escalation trial of rhenium-186 nanoliposome (186RNL) in recurrent glioma [RGBM] via Convection Enhanced Delivery (CED). Neuro Oncol. 2023;25:v86. doi: 10.1093/neuonc/noad179.0332
- Brenner A, Youssef M, LaFrance N, et al. LOCL-04 safety and feasibility of rhenium-186 nanoliposome (186rnl) in leptomeningeal metastases [lm] phase 1/2a dose escalation trial. Neurooncol Adv. 2022;4(Suppl 1):i12. doi: 10.1093/noajnl/vdac078.046
- Chang CH, Chang MC, Chang YJ, Chen LC, Lee TW, Ting G. Translating research for the radiotheranostics of nanotargeted 188re-liposome. Int J Mol Sci. 2021;22(8):3868. doi: 10.3390/ijms22083868
- Phillips WT, Klipper R, Goins B. Novel method of greatly enhanced delivery of liposomes to lymph nodes. J Pharmacol Exp Ther. 2000;295(1):309-313.