AccScience Publishing / ARNM / Online First / DOI: 10.36922/arnm.3130
REVIEW

Emerging role of carbon fiber-reinforced polyetheretherketone instrumentation in spinal oncology: A systematic review

Jacob Ward1* Seth Wilson1 Ryan G. Eaton2 Vicente Coelho2 David S. Xu2 Vikram B. Chakravarthy2
Show Less
1 The Ohio State University College of Medicine, Columbus, Ohio, United States of America
2 Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
Submitted: 11 March 2024 | Accepted: 13 May 2024 | Published: 30 May 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Spinal metastases are increasing in incidence with affected patients experiencing significant pain and disability. Continuous research and innovation in the field of spinal oncology have given rise to an increase in personalized treatment based on tumor characteristics and various patient-specific factors. Carbon fiber-reinforced polyetheretherketone (CFR-PEEK) instrumentation has gained popularity as an alternative to titanium-based implants primarily due to their ability to minimize imaging artifact. A literature search was performed to find articles that examined the use of CFR-PEEK screws in spinal fusion procedures in oncologic patients. Data from each study were compiled to compare complication rates, durability, and effects on postoperative imaging in patients treated with CFR-PEEK instrumentation to those treated with traditional titanium implants. Overall, CFR-PEEK-based products were similar to titanium hardware in terms of durability and complication rates while CFR-PEEK allows for improved postoperative tumor surveillance and radiosurgical planning.

Keywords
Spine oncology
CFR-PEEK
Spine metastases
Stereotactic body radiotherapy
Radiosurgery
Local control
Magnetic resonance imaging
Funding
None.
References
  1. Tsuchie H, Miyakoshi N, Hongo M, et al. Impact of a specialized outpatient clinic on bone metastasis and its burden on spine surgeons. In Vivo. 2021;35(6):3575-3579. doi: 10.21873/invivo.12661

 

  1. Van den Brande R, Cornips EM, Peeters M, Ost P, Billiet C, Van de Kelft E. Epidemiology of spinal metastases, metastatic epidural spinal cord compression and pathologic vertebral compression fractures in patients with solid tumors: A systematic review. J Bone Oncol. 2022;35:100446. doi: 10.1016/j.jbo.2022.100446

 

  1. Orenday-Barraza JM, Cavagnaro MJ, Avila MJ, et al. 10-year trends in the surgical management of patients with spinal metastases: A scoping review. World Neurosurg. 2022;157:170-186.e3. doi: 10.1016/j.wneu.2021.10.086

 

  1. Laufer I, Rubin DG, Lis E, et al. The NOMS framework: Approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18(6):744-751. doi: 10.1634/theoncologist.2012-0293

 

  1. Cofano F, Di Perna G, Monticelli M, et al. Carbon fiber reinforced vs titanium implants for fixation in spinal metastases: A comparative clinical study about safety and effectiveness of the new “carbon-strategy.” J Clin Neurosci. 2020;75:106-111. doi: 10.1016/j.jocn.2020.03.013

 

  1. Shen FH, Gasbarrini A, Lui DF, Reynolds J, Capua J, Boriani S. Integrated custom composite polyetheretherketone/carbon fiber (PEEK/CF) vertebral body replacement (VBR) in the treatment of bone tumors of the spine: A preliminary report from a multicenter study. Spine (Phila Pa 1976). 2022;47(3):252-260. doi: 10.1097/BRS.0000000000004177

 

  1. Thureau S, Marchesi V, Vieillard MH, et al. Efficacy of extracranial stereotactic body radiation therapy (SBRT) added to standard treatment in patients with solid tumors (breast, prostate and non-small cell lung cancer) with up to 3 bone-only metastases: Study protocol for a randomised phase III trial (STEREO-OS). BMC Cancer. 2021;21(1):117. doi: 10.1186/s12885-021-07828-2

 

  1. Redmond KJ, Lo SS, Fisher C, Sahgal A. Postoperative stereotactic body radiation therapy (SBRT) for spine metastases: A critical review to guide practice. Int J Radiat Oncol Biol Phys. 2016;95(5):1414-1428. doi: 10.1016/j.ijrobp.2016.03.027

 

  1. Ringel F, Ryang YM, Kirschke JS, et al. Radiolucent carbon fiber-reinforced pedicle screws for treatment of spinal tumors: Advantages for radiation planning and follow-up imaging. World Neurosurg. 2017;105:294-301. doi: 10.1016/j.wneu.2017.04.091

 

  1. Joerger AK, Seitz S, Lange N, et al. CFR-PEEK pedicle screw instrumentation for spinal neoplasms: A single center experience on safety and efficacy. Cancers (Basel). 2022;14(21):5275. doi: 10.3390/cancers14215275

 

  1. Neal MT, Richards AE, Curley KL, et al. Carbon fiber-reinforced PEEK instrumentation in the spinal oncology population: A retrospective series demonstrating technique, feasibility, and clinical outcomes. Neurosurg Focus. 2021;50(5):E13. doi: 10.3171/2021.2.FOCUS20995

 

  1. Wagner A, Haag E, Joerger AK, et al. Cement-augmented carbon fiber-reinforced pedicle screw instrumentation for spinal metastases: Safety and efficacy. World Neurosurg. 2021;154:e536-e546. doi: 10.1016/j.wneu.2021.07.092

 

  1. Tedesco G, Gasbarrini A, Bandiera S, Ghermandi R, Boriani S. Composite PEEK/Carbon fiber implants can increase the effectiveness of radiotherapy in the management of spine tumors. J Spine Surg. 2017;3(3):323-329. doi: 10.21037/jss.2017.06.20

 

  1. Hubertus V, Wessels L, Früh A, et al. Navigation accuracy and assessability of carbon fiber-reinforced PEEK instrumentation with multimodal intraoperative imaging in spinal oncology. Sci Rep. 2022;12(1):15816. doi: 10.1038/s41598-022-20222-7

 

  1. Boriani S, Tedesco G, Ming L, et al. Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: A preliminary report. Eur Spine J. 2018;27(4):874-881. doi: 10.1007/s00586-017-5258-5

 

  1. Alvarez-Breckenridge C, de Almeida R, Haider A, et al. Carbon fiber-reinforced polyetheretherketone spinal implants for treatment of spinal tumors: Perceived advantages and limitations. Neurospine. 2023;20(1):317-326. doi: 10.14245/ns.2244920.460

 

  1. Adler D, Akbar M, Spicher A, Goerke SA, Schmoelz W. Biomechanical study of a novel, expandable, non-metallic and radiolucent CF/PEEK vertebral body replacement (VBR). Materials (Basel). 2019;12(17):2732. doi: 10.3390/ma12172732

 

  1. Kabir SMR, Alabi J, Rezajooi K, Casey ATH. Anterior cervical corpectomy: Review and comparison of results using titanium mesh cages and carbon fibre reinforced polymer cages. Br J Neurosurg. 2010;24(5):542-546. doi: 10.3109/02688697.2010.503819

 

  1. Scholes SC, Unsworth A. Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. J Mater Sci Mater Med. 2009;20(1):163-170. doi: 10.1007/s10856-008-3558-3

 

  1. Georgiou KR, Scherer MA, Fan CM, et al. Methotrexate chemotherapy reduces osteogenesis but increases adipogenic potential in the bone marrow. J Cell Physiol. 2012;227(3):909-918. doi: 10.1002/jcp.22807

 

  1. Itshayek E, Cohen JE, Yamada Y, et al. Timing of stereotactic radiosurgery and surgery and wound healing in patients with spinal tumors: A systematic review and expert opinions. Neurol Res. 2014;36(6):510-523. doi: 10.1179/1743132814Y.0000000380

 

  1. Sugimoto M, Takahashi S, Toguchida J, Kotoura Y, Shibamoto Y, Yamamuro T. Changes in bone after high-dose irradiation. Biomechanics and histomorphology. J Bone Joint Surg Br. 1991;73(3):492-497. doi: 10.1302/0301-620X.73B3.1670456

 

  1. Poel R, Belosi F, Albertini F, et al. Assessing the advantages of CFR-PEEK over titanium spinal stabilization implants in proton therapy-a phantom study. Phys Med Biol. 2020;65(24):245031. doi: 10.1088/1361-6560/ab8ba0

 

  1. Depauw N, Pursley J, Lozano-Calderon SA, Patel CG. Evaluation of carbon fiber and titanium surgical implants for proton and photon therapy. Pract Radiat Oncol. 2023;13(3):256-262. doi: 10.1016/j.prro.2023.01.009

 

  1. Guo Y, Chen C, Zhang S, Ren L, Zhao Y, Guo W. Mediation of mechanically adapted TiCu/TiCuN/CFR-PEEK implants in vascular regeneration to promote bone repair in vitro and in vivo. J Orthop Translat. 2022;33:107-119. doi: 10.1016/j.jot.2022.02.008

 

  1. Bellato RT, Teixeira WGJ, Torelli AG, Cristante AF, de Barros TEP, de Camargo OP. Late failure of posterior fixation without bone fusion for vertebral metastases. Acta Ortop Bras. 2015;23(6):303-306. doi: 10.1590/1413-785220152306151402

 

  1. Park SJ, Lee KH, Lee CS, et al. Instrumented surgical treatment for metastatic spinal tumors: Is fusion necessary? J Neurosurg Spine. 201932:456-464. doi: 10.3171/2019.8.SPINE19583

 

  1. Yee TJ, Saadeh YS, Strong MJ, et al. Survival, fusion, and hardware failure after surgery for spinal metastatic disease. J Neurosurg Spine. 2021;34(4):665-672. doi: 10.3171/2020.8.SPINE201166

 

  1. Drakhshandeh D, Miller JA, Fabiano AJ. Instrumented spinal stabilization without fusion for spinal metastatic disease. World Neurosurg. 2018;111:e403-e409. doi: 10.1016/j.wneu.2017.12.081

 

  1. Brantigan JW, Steffee AD. A carbon fiber implant to aid interbody lumbar fusion. Spine (Phila Pa 1976). 1993;18(14):2106-2117. doi: 10.1097/00007632-199310001-00030

 

  1. Heary RF, Kheterpal A, Mammis A, Kumar S. Stackable carbon fiber cages for thoracolumbar interbody fusion after corpectomy: Long-term outcome analysis. Neurosurgery. 2011;68(3):810-818; discussion 818-9. doi: 10.1227/NEU.0b013e3182077a9f

 

  1. Rousseau MA, Lazennec JY, Saillant G. Circumferential arthrodesis using PEEK cages at the lumbar spine. J Spinal Disord Tech. 2007;20(4):278-281. doi: 10.1097/01.bsd.0000211284.14143.63

 

  1. Brantigan JW, Neidre A. Achievement of normal sagittal plane alignment using a wedged carbon fiber reinforced polymer fusion cage in treatment of spondylolisthesis. Spine J. 2003;3(3):186-196. doi: 10.1016/s1529-9430(02)00536-3

 

  1. Fujihara K, Huang ZM, Ramakrishna S, Satknanantham K, Hamada H. Feasibility of knitted carbon/PEEK composites for orthopedic bone plates. Biomaterials. 2004;25(17):3877-3885. doi: 10.1016/j.biomaterials.2003.10.050

 

  1. Dickinson AS, Taylor AC, Browne M. The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation. J Biomech. 2012;45(4):719-723. doi: 10.1016/j.jbiomech.2011.11.042

 

  1. Li CS, Vannabouathong C, Sprague S, Bhandari M. The use of carbon-fiber-reinforced (CFR) PEEK material in orthopedic implants: A systematic review. Clin Med Insights Arthritis Musculoskelet Disord. 2015;8:33-45. doi: 10.4137/CMAMD.S20354

 

  1. Ha SW, Kirch M, Birchler F, et al. Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation. J Mater Sci Mater Med. 1997;8(11):683-690. doi: 10.1023/a:1018535923173
Conflict of interest
The authors declare they have no competing interests.
Share
Back to top
Advances in Radiotherapy & Nuclear Medicine, Electronic ISSN: 2972-4392 Published by AccScience Publishing