AccScience Publishing / ARNM / Volume 2 / Issue 2 / DOI: 10.36922/arnm.2972
ORIGINAL RESEARCH ARTICLE

Investigation of the optimal tube voltage kV exposure parameters for general X-ray of dental cone-beam computed tomography: A cephalometric view

James Anthony Rabba1,2* Godwin Irinam Efenji2,3 Felix Omachoko Uloko2 Dauda Biodun Amuda4,5 Hanis Arina Jaafar1 Fatanah Mohamad Suhaimi1 Noor Diyana Osman1
Show Less
1 Advanced Medical and Dental Institute, Universiti Sains Malaysia, SAINS@Bertam, Kepala Batas, Penang, Malaysia
2 Department of Physics, Federal University Lokoja, PMB Lokoja, Kogi State, Nigeria
3 School of Physics, Universiti Sains Malaysia, Penang, Malaysia
4 Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
5 Department of Radiology, Ladoke Akintola University of Technology Teaching Hospital, Ogbomoso, Oyo State, Nigeria
Submitted: 20 February 2024 | Accepted: 30 May 2024 | Published: 19 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study aims to investigate and optimize the effect of different exposure parameters on the reduction of noise and radiation dose and to find the optimal balance among tube voltage, tube current, and exposure time for the latest-generation cone-beam computed tomography system (CBCT) at Advanced Medical and Dental Institute, Universiti Sains Malaysia, using the dose area product (DAP) meter. The DAP meter was attached to the X-ray detector of the CBCT device to cover the entire irradiated area and then connected to a Raysafe electrometer. The DAP meter was scanned with the following exposure parameter: constant tube voltage of 70 kV with a varying tube current ranging from 5 mA – 16 mA and then at a constant tube current of 10mA and a varying tube voltage ranging from 60 kV – 80 kV. For each scanning protocol, the noise was determined. At constant tube voltage and varying tube current, the noise level ranged from 41.99 – 82.16, while at constant tube current and varying tube voltage, the noise level ranged from 50.66 – 60.76 with equal exposure time. A 0.09% increase in noise was observed when the tube voltage was varied. Therefore, low noise protocols should consist of a reduction in the tube current setting rather than a reduction in peak voltage (kVp), as this would result in a smaller level of noise and consequently less quality degradation in the image.

Keywords
Noise
Dose area product
Cone-beam computed tomography
Image quality
X-ray
Cephalometry
Funding
None.
References
  1. Venkatesh E, Elluru SV. Cone beam computed tomography: Basics and applications in dentistry. J Istanbul Univ Fac Dent. 2017;5:102-121. doi: 10.17096/jiufd.00289

 

  1. Lemoigne Y, Caner A, Rahal G. Physics for Medical Imaging Applications. vol. 240. Netherlands: Springer Dordrecht; 2007.

 

  1. Yel I, Booz C, Albrecht MH, et al. Optimization of image quality and radiation dose using different cone-beam CT exposure parameters. Eur J Radiol. 2019;116:68-75. doi: 10.1016/j.ejrad.2019.04.005

 

  1. Panmekiate S, Rungwittayathon P, Suptaweeponboon W, Tangtraitham N, Pauwels R. Optimization of exposure parameters in dental cone beam computed tomography using a 3-step approach. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;126(6):545-552. doi: 10.1016/j.oooo.2018.08.004

 

  1. Bamba J, Araki K, Endo A, Okano T. Image quality assessment of three cone beam CT machines using the SEDENTEXCT CT phantom. Dentomaxillofac Radiol. 2013;42(8):20120445. doi: 10.1259/dmfr.20120445

 

  1. Pauwels R, Seynaeve L, Henriques JC, et al. Optimization of dental CBCT exposures through mAs reduction. Dentomaxillofac Radiol. 2015;44(9):20150108. doi: 10.1259/dmfr.20150108

 

  1. De Oliveira MVL, Santos AC, Paulo G, Campos PSF, Santos J. Application of a newly developed software program for image quality assessment in conebeam computed tomography. Imaging Sci Dent. 2017;47(2):75-86. doi: 10.5624/isd.2017.47.2.75

 

  1. Park HN, Min CK, Kim KA, Koh KJ. Optimization of exposure parameters and relationship between subjective and technical image quality in cone-beam computed tomography. Imaging Sci Dent. 2019;49(2):139-151. doi: 10.5624/isd.2019.49.2.139

 

  1. Alawaji Y, MacDonald DS, Giannelis G, Ford NL. Optimization of cone beam computed tomography image quality in implant dentistry. Clin Exp Dent Res. 2018;4(6):268-278. doi: 10.1002/cre2.141

 

  1. Brasil DM, Pauwels R, Coucke W, Haiter-Neto F, Jacobs R. Image quality optimization of narrow detector dental computed tomography for paediatric patients. Dentomaxillofac Radiol. 2019;48:20190032. doi: 10.1259/dmfr.20190032

 

  1. Spin-Neto R, Matzen LH, Schropp L, Gotfredsen E, Wenzel A. Factors affecting patient movement and re-exposure in cone beam computed tomography examination. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119(5):572-578. doi: 10.1016/j.oooo.2015.01.011

 

  1. Shin HS, Nam KC, Park H, Choi HU, Kim HY, Park CS. Effective doses from panoramic radiography and CBCT (cone beam CT) using dose area product (DAP) in dentistry. Dentomaxillofac Radiol. 2014;43(5):20130439. doi: 10.1259/dmfr.20130439

 

  1. Li CL, Thakur Y, Ford NL. Comparison of the CTDI and AAPM report No. 111 methodology in adult, adolescent, and child head phantoms for MSCT and dental CBCT scanners. J Med Imaging (Bellingham). 2017;4(3):031212. doi: 10.1117/1.jmi.4.3.031212

 

  1. Al-Ekrish AA. Effect of exposure time on the accuracy and reliability of cone beam computed tomography in the assessment of dental implant site dimensions in dry skulls. Saudi Dent J. 2012;24(3-4):127-134. doi: 10.1016/j.sdentj.2012.05.001

 

  1. Pauwels R, Silkosessak O, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S. A pragmatic approach to determine the optimal kVp in cone beam CT: Balancing contrast-to-noise ratio and radiation dose. Dentomaxillofac Radiol. 2014;43(5):20140059. doi: 10.1259/dmfr.20140059

 

  1. Zarb F, Rainford L, McEntee MF. Image quality assessment tools for optimization of CT images. Radiography. 2010;16(2):147-153. doi: 10.1016/j.radi.2009.10.002

 

  1. Jadu FM, Hill ML, Yaffe MJ, Lam EWN. Optimization of exposure parameters for cone beam computed tomography sialography. Dentomaxillofac Radiol. 2011;40(6):362-368. doi: 10.1259/dmfr/81159071

 

  1. EFOMP-ESTRO-IAEA. Quality Control in Cone-beam Computed Tomography (CBCT) EFOMP-ESTRO-IAEA Protocol. Austria: EFOMP-ESTRO-IAEA; 2019.

 

  1. Groenewald A. Design of a Universal Phantom for Quality Assurance in Diagnostic Radiology X-ray Imaging. PhD thesis, Stellenbosch University; 2017. doi: 10.13140/RG.2.2.13548.00645

 

  1. Ariga E, Ito S, Deji S, Saze T, Nishizawa K. Determination of half value layers of X-ray equipment using computed radiography imaging plates. Phys Med. 2012;28(1):71-75. doi: 10.1016/j.ejmp.2011.01.001

 

  1. Holroyd JR. National reference doses for dental cephalometric radiography. Br J Radiol. 2011;84(1008):1121-1124. doi: 10.1259/bjr/26420990

 

  1. Stanley DN, Papanikolaou N, Gutierreza AN. Development of image quality assurance measures of the ExacTrac localization system using commercially available image evaluation software and hardware for image-guided radiotherapy. J Appl Clin Med Phys. 2014;15(6):81-91. doi: 10.1120/jacmp.v15i6.4877

 

  1. Elkhateeb SM, Torgersen GR, Arnout EA. Image quality assessment of clinically-applied CBCT protocols using a QAT phantom. Dentomaxillofac Radiol. 2016;45(5):20160075. doi: 10.1259/dmfr.20160075

 

  1. Karmazyn B, Liang Y, Klahr P, Jennings SG. Effect of tube voltage on ct noise levels in different phantom sizes. Am J Roentgenol. 2013;200(5):1001-1005. doi: 10.2214/AJR.12.9828

 

  1. Primak AN, McCollough CH, Bruesewitz MR, Zhang J, Fletcher JG. Relationship between noise, dose, and pitch in cardiac multi-detector row CT. Radiographics. 2006;26(6):1785-1794. doi: 10.1148/rg.266065063

 

  1. Akinlade BI, Farai IP, Okunade AA. Survey of dose area product received by patients undergoing common radiological examinations in four centers in Nigeria. J Appl Clin Med Phys. 2012;13(4):188-196. doi: 10.1120/jacmp.v13i4.3712

 

  1. Ministry of Health Malaysia. Technical Quality Control Protocol Handbook: Positron Emission Tomography/ Computed Tomography (PET/CT) Systems. Medical Radiation Surveillance Division; 2015. p. 1-142. Available from: https://radia.moh.gov.my/project/new/radia/ filetransfer/downloads/files/65qc/protokol/pet_spect_non imaging.pdf [Last accessed on 2024 Jun 18].

 

  1. Kareliotis G. Study of kVp and mAs Effect on Radiation dose and Image Quality in Computed Tomography. Zografou: National and Kapodistrian University of Athens, Faculty of Medicine; 2015.

 

  1. Hidalgo-Rivas JA, Theodorakou C, Carmichael F, Murray B, Payne M, Horner K. Use of cone beam CT in children and young people in three United Kingdom dental hospitals. Int J Paediatr Dent. 2014;24(5):336-348. doi: 10.1111/ipd.12076

 

  1. Muhogora W, Padovani R, Msaki P. Initial quality performance results using a phantom to simulate chest computed radiography. J Med Phys. 2011;36(1):22-28. doi: 10.4103/0971-6203.75468
Conflict of interest
The authors declare that they have no competing interests.
Share
Back to top
Advances in Radiotherapy & Nuclear Medicine, Electronic ISSN: 2972-4392 Published by AccScience Publishing