SARS-CoV-2 and its long-term neurological impact: Unraveling the mechanisms of neurodegeneration and cognitive decline
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), is associated with neurological effects that persist beyond the acute phase, collectively referred to as post-acute sequelae of SARS-CoV-2 infection (PASC) or “long COVID.” This article discusses the neurological impacts of PASC, which can occur regardless of the initial illness’s severity. Studies indicate that most patients continue to experience symptoms for at least 3 months post-infection. Long-term effects include neurocognitive deficits, sleep disturbances, and the exacerbation of pre-existing conditions. Proposed mechanisms underlying these effects include neuroinflammation, microvascular damage, and autoimmune responses, while direct viral neuroinvasion remains a topic of ongoing debate. SARS-CoV-2 may also worsen pre-existing neurological disorders and increase the risk of developing neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease. The article highlights the need for longitudinal studies to better understand the variability in outcomes and the mechanisms driving these persistent effects. In addition, it explores the inflammatory pathways linking long COVID to AD. Both conditions are characterized by chronic inflammation, activation of shared markers such as the NLR family pyrin domain containing 3 inflammasome, and alterations in amyloid-beta production. The apolipoprotein E4 gene, a known risk factor for AD, is also associated with more severe COVID-19 outcomes. Neuroimaging studies reveal brain changes in COVID-19 survivors, particularly in regions related to cognition and memory, further emphasizing the need for long-term research to assess the potential role of long COVID in exacerbating neurodegenerative diseases.
- Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239-1242. doi: 10.1001/jama.2020.2648
- Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382(23):2268-2270. doi: 10.1056/NEJMc2008597
- Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133-146. doi: 10.1038/s41579-022-00846-2
- Zhang H, Huang C, Gu X, et al. 3-year outcomes of discharged survivors of COVID-19 following the SARS-CoV-2 omicron (B.1.1.529) wave in 2022 in China: A longitudinal cohort study. Lancet Respir Med. 2024;12(1):55-66. doi: 10.1016/S2213-2600(23)00387-9
- Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758-763. doi: 10.1038/s41586-022-05542-y
- Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: An analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022;9(10):815-827. doi: 10.1016/S2215-0366(22)00260-7
- Pandharipande P, Williams Roberson S, Harrison FE, Wilson JE, Bastarache JA, Ely EW. Mitigating neurological, cognitive, and psychiatric sequelae of COVID-19-related critical illness. Lancet Respir Med. 2023;11(8):726-738. doi: 10.1016/S2213-2600(23)00238-2
- Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259-264. doi: 10.1038/s41586-021-03553-9
- Liu TC, Yoo SM, Sim MS, Motwani Y, Viswanathan N, Wenger NS. Perceived cognitive deficits in patients with symptomatic SARS-CoV-2 and their association with post-COVID-19 condition. JAMA Netw Open. 2023;6(5):e2311974. doi: 10.1001/jamanetworkopen.2023.11974
- Hartung TJ, Neumann C, Bahmer T, et al. Fatigue and cognitive impairment after COVID-19: A prospective multicentre study. EClinicalMedicine. 2022;53:101651. doi: 10.1016/j.eclinm.2022.101651
- Zhao S, Martin EM, Reuken PA, et al. Long COVID is associated with severe cognitive slowing: A multicentre cross-sectional study. EClinicalMedicine. 2024;68:102434. doi: 10.1016/j.eclinm.2024.102434
- Hampshire A, Azor A, Atchison C, et al. Cognition and memory after Covid-19 in a large community sample. N Engl J Med. 2024;390(9):806-818. doi: 10.1056/NEJMoa2311330
- Becker JH, Lin JJ, Doernberg M, et al. Assessment of cognitive function in patients after COVID-19 infection. JAMA Netw Open. 2021;4(10):e2130645. doi: 10.1001/jamanetworkopen.2021.30645
- Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416-427. doi: 10.1016/S2215-0366(21)00084-5
- Bohmwald K, Galvez NMS, Rios M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386. doi: 10.3389/fncel.2018.00386
- Xie Y, Xu E, Al-Aly Z. Risks of mental health outcomes in people with covid-19: Cohort study. BMJ. 2022;376:e068993. doi: 10.1136/bmj-2021-068993
- Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19. Nat Med. 2022;28(11):2406-2415. doi: 10.1038/s41591-022-02001-z
- Amraei R, Xia C, Olejnik J, et al. Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proc Natl Acad Sci U S A. 2022;119(6):e2113874119. doi: 10.1073/pnas.2113874119
- Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856-860. doi: 10.1126/science.abd2985
- Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052
- Lersy F, Benotmane I, Helms J, et al. Cerebrospinal fluid features in patients with coronavirus disease 2019 and neurological manifestations: Correlation with brain magnetic resonance imaging findings in 58 patients. J Infect Dis. 2021;223(4):600-609. doi: 10.1093/infdis/jiaa745
- Schweitzer F, Goereci Y, Franke C, et al. Cerebrospinal fluid analysis post-COVID-19 is not suggestive of persistent central nervous system infection. Ann Neurol. 2022;91(1):150-157. doi: 10.1002/ana.26262
- Yang AC, Kern F, Losada PM, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595(7868):565-571. doi: 10.1038/s41586-021-03710-0
- Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022;604(7907):697-707. doi: 10.1038/s41586-022-04569-5
- Monje M, Iwasaki A. The neurobiology of long COVID. Neuron. 2022;110(21):3484-3496. doi: 10.1016/j.neuron.2022.10.006
- Wong AC, Devason AS, Umana IC, et al. Serotonin reduction in post-acute sequelae of viral infection. Cell. 2023;186(22):4851-4867.e20. doi: 10.1016/j.cell.2023.09.013
- Moghimi N, Di Napoli M, Biller J, et al. The neurological manifestations of post-acute sequelae of SARS-CoV-2 infection. Curr Neurol Neurosci Rep. 2021;21(9):44. doi: 10.1007/s11910-021-01130-1
- Amenta EM, Spallone A, Rodriguez-Barradas MC, El Sahly HM, Atmar RL, Kulkarni PA. Postacute COVID-19: An overview and approach to classification. Open Forum Infect Dis. 2020;7(12):ofaa509. doi: 10.1093/ofid/ofaa509
- Goertz YMJ, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: The post-COVID-19 syndrome? ERJ Open Res. 2020;6(4):00542-2020. doi: 10.1183/23120541.00542-2020
- Sykes DL, Holdsworth L, Jawad N, Gunasekera P, Morice AH, Crooks MG. Post-COVID-19 symptom burden: What is Long-COVID and how should we manage it? Lung. 2021;199(2):113-119. doi: 10.1007/s00408-021-00423-z
- Orru G, Bertelloni D, Diolaiuti F, et al. Long-COVID syndrome? A study on the persistence of neurological, psychological and physiological symptoms. Healthcare (Basel). 2021;9(5):575. doi: 10.3390/healthcare9050575
- Abboud H, Abboud FZ, Kharbouch H, Arkha Y, El Abbadi N, El Ouahabi A. COVID-19 and SARS-Cov-2 infection: Pathophysiology and clinical effects on the nervous system. World Neurosurg. 2020;140:49-53. doi: 10.1016/j.wneu.2020.05.193
- Berger JR. COVID-19 and the nervous system. J Neurovirol. 2020;26(2):143-148. doi: 10.1007/s13365-020-00840-5
- Wang F, Kream RM, Stefano GB. Long-term respiratory and neurological sequelae of COVID-19. Med Sci Monit. 2020;26:e928996. doi: 10.12659/MSM.928996
- Berlit P, Bosel J, Gahn G, et al. “Neurological manifestations of COVID-19” - guideline of the German society of neurology. Neurol Res Pract. 2020;2:51. doi: 10.1186/s42466-020-00097-7
- Timmons GM, Rempe T, Bevins EA, et al. CNS lymphocytic vasculitis in a young woman with COVID-19 infection. Neurol Neuroimmunol Neuroinflamm. 2021;8(5):e1048. doi: 10.1212/NXI.0000000000001048
- Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4):626-631. doi: 10.1038/s41591-021-01292-y
- Tenforde MW, Kim SS, Lindsell CJ, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network - United States, March-June 2020. MMWR Morb Mortal Wkly Rep. 2020;69(30):993-998. doi: 10.15585/mmwr.mm6930e1
- Graham EL, Clark JR, Orban ZS, et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers”. Ann Clin Transl Neurol. 2021;8(5):1073-1085. doi: 10.1002/acn3.51350
- Shanley JE, Valenciano AF, Timmons G, et al. Longitudinal evaluation of neurologic-post acute sequelae SARS-CoV-2 infection symptoms. Ann Clin Transl Neurol. 2022;9(7):995-1010. doi: 10.1002/acn3.51578
- Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021;38:101019. doi: 10.1016/j.eclinm.2021.101019
- Rank A, Tzortzini A, Kling E, et al. One year after mild COVID-19: The majority of patients maintain specific immunity, but one in four still suffer from long-term symptoms. J Clin Med. 2021;10(15):3305. doi: 10.3390/jcm10153305
- Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-615. doi: 10.1038/s41591-021-01283-z
- Carfi A, Bernabei R, Landi F, Gemelli Against C-P-ACSG. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603-605. doi: 10.1001/jama.2020.12603
- Ludvigsson JF. Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta Paediatr. 2021;110(3):914-921. doi: 10.1111/apa.15673
- Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020;15(11):e0240784. doi: 10.1371/journal.pone.0240784
- Belvis R. Headaches during COVID-19: My clinical case and review of the literature. Headache. 2020;60(7):1422-1426. doi: 10.1111/head.13841
- Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020;81(6):e4-e6. doi: 10.1016/j.jinf.2020.08.029
- Nordvig AS, Fong KT, Willey JZ, et al. Potential neurologic manifestations of COVID-19. Neurol Clin Pract. 2021;11(2):e135-e146. doi: 10.1212/CPJ.0000000000000897
- Heneka MT, Golenbock D, Latz E, Morgan D, Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther. 2020;12(1):69. doi: 10.1186/s13195-020-00640-3
- Taquet M, Luciano S, Geddes JR, Harrison PJ. Bidirectional associations between COVID-19 and psychiatric disorder: Retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry. 2021;8(2):130-140. doi: 10.1016/S2215-0366(20)30462-4
- Dani M, Dirksen A, Taraborrelli P, et al. Autonomic dysfunction in “long COVID”: Rationale, physiology and management strategies. Clin Med (Lond). 2021;21(1):e63-e67. doi: 10.7861/clinmed.2020-0896
- Novak P, Mukerji SS, Alabsi HS, et al. Multisystem involvement in post-acute sequelae of coronavirus disease 19. Ann Neurol. 2022;91(3):367-379. doi: 10.1002/ana.26286
- Mantovani A, Morrone MC, Patrono C, et al. Long covid: Where we stand and challenges ahead. Cell Death Differ. 2022;29(10):1891-1900. doi: 10.1038/s41418-022-01052-6
- Griffin DO. Postacute sequelae of COVID (PASC or long COVID): An evidenced-based approach. Open Forum Infect Dis. 2024;11(9):ofae462. doi: 10.1093/ofid/ofae462
- Balcom EF, Nath A, Power C. Acute and chronic neurological disorders in COVID-19: Potential mechanisms of disease. Brain. 2021;144(12):3576-3588. doi: 10.1093/brain/awab302
- Fedeli U, Casotto V, Barbiellini Amidei C, et al. Parkinson’s disease related mortality: Long-term trends and impact of COVID-19 pandemic waves. Parkinsonism Relat Disord. 2022;98:75-77. doi: 10.1016/j.parkreldis.2022.04.011
- Bhargava A, Szpunar SM, Sharma M, et al. Clinical features and risk factors for in-hospital mortality from COVID- 19 infection at a tertiary care medical center, at the onset of the US COVID-19 pandemic. J Intensive Care Med. 2021;36(6):711-718. doi: 10.1177/08850666211001799
- Daniels H, Lacey AS, Mikadze D, et al. Epilepsy mortality in wales during COVID-19. Seizure. 2022;94:39-42. doi: 10.1016/j.seizure.2021.11.017
- Beghi E, Helbok R, Ozturk S, et al. Short- and long-term outcome and predictors in an international cohort of patients with neuro-COVID-19. Eur J Neurol. 2022;29(6):1663-1684. doi: 10.1111/ene.15293
- Cho SM, White N, Premraj L, et al. Neurological manifestations of COVID-19 in adults and children. Brain. 2023;146(4):1648-1661. doi: 10.1093/brain/awac332
- Beghi E, Moro E, Davidescu EI, et al. Comparative features and outcomes of major neurological complications of COVID-19. Eur J Neurol. 2023;30(2):413-433. doi: 10.1111/ene.15617
- Chou SH, Beghi E, Helbok R, et al. Global incidence of neurological manifestations among patients hospitalized with COVID-19-a report for the GCS-NeuroCOVID consortium and the ENERGY consortium. JAMA Netw Open. 2021;4(5):e2112131. doi: 10.1001/jamanetworkopen.2021.12131
- Rass V, Beer R, Schiefecker AJ, et al. Neurological outcomes 1 year after COVID-19 diagnosis: A prospective longitudinal cohort study. Eur J Neurol. 2022;29(6):1685-1696. doi: 10.1111/ene.15307
- Jiao T, Huang Y, Sun H, Yang L. Research progress of post-acute sequelae after SARS-CoV-2 infection. Cell Death Dis. 2024;15(4):257. doi: 10.1038/s41419-024-06642-5
- Zhang H, Zang C, Xu Z, et al. Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes. Nat Med. 2023;29(1):226-235. doi: 10.1038/s41591-022-02116-3
- Spudich S, Nath A. Nervous system consequences of COVID-19. Science. 2022;375(6578):267-269. doi: 10.1126/science.abm2052
- Sarubbo F, El Haji K, Vidal-Balle A, Bargay Lleonart J. Neurological consequences of COVID-19 and brain related pathogenic mechanisms: A new challenge for neuroscience. Brain Behav Immun Health. 2022;19:100399. doi: 10.1016/j.bbih.2021.100399
- Molaverdi G, Kamal Z, Safavi M, et al. Neurological complications after COVID-19: A narrative review. eNeurologicalSci. 2023;33:100485. doi: 10.1016/j.ensci.2023.100485
- Daugherty SE, Guo Y, Heath K, et al. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: Retrospective cohort study. BMJ. 2021;373:n1098. doi: 10.1136/bmj.n1098
- Lund LC, Hallas J, Nielsen H, et al. Post-acute effects of SARS-CoV-2 infection in individuals not requiring hospital admission: A Danish population-based cohort study. Lancet Infect Dis. 2021;21(10):1373-1382. doi: 10.1016/S1473-3099(21)00211-5
- Mizrahi B, Sudry T, Flaks-Manov N, et al. Long covid outcomes at one year after mild SARS-CoV-2 infection: Nationwide cohort study. BMJ. 2023;380:e072529. doi: 10.1136/bmj-2022-072529
- Dangayach NS, Newcombe V, Sonnenville R. Acute neurologic complications of COVID-19 and postacute sequelae of COVID-19. Crit Care Clin. 2022;38(3):553-570. doi: 10.1016/j.ccc.2022.03.002
- Comeau D, Martin M, Robichaud GA, Chamard- Witkowski L. Neurological manifestations of post-acute sequelae of COVID-19: Which liquid biomarker should we use? Front Neurol. 2023;14:1233192. doi: 10.3389/fneur.2023.1233192
- Ahmad SJ, Feigen CM, Vazquez JP, Kobets AJ, Altschul DJ. Neurological sequelae of COVID-19. J Integr Neurosci. 2022;21(3):77. doi: 10.31083/j.jin2103077
- Marsters CM, Bakal JA, Lam GY, McAlister FA, Power C. Increased frequency and mortality in persons with neurological disorders during COVID-19. Brain. 2024;147(7):2542-2551. doi: 10.1093/brain/awae117
- Cohen K, Ren S, Heath K, et al. Risk of persistent and new clinical sequelae among adults aged 65 years and older during the post-acute phase of SARS-CoV-2 infection: Retrospective cohort study. BMJ. 2022;376:e068414. doi: 10.1136/bmj-2021-068414
- Modin D, Claggett B, Sindet-Pedersen C, et al. Acute COVID-19 and the incidence of ischemic stroke and acute myocardial infarction. Circulation. 2020;142(21):2080-2082. doi: 10.1161/CIRCULATIONAHA.120.050809
- Katsoularis I, Fonseca-Rodriguez O, Farrington P, Lindmark K, Fors Connolly AM. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: A self-controlled case series and matched cohort study. Lancet. 2021;398(10300):599-607. doi: 10.1016/S0140-6736(21)00896-5
- Merkler AE, Parikh NS, Mir S, et al. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol. 2020;77(11):1-7. doi: 10.1001/jamaneurol.2020.2730
- Daroische R, Hemminghyth MS, Eilertsen TH, Breitve MH, Chwiszczuk LJ. Cognitive impairment after COVID-19-a review on objective test data. Front Neurol. 2021;12:699582. doi: 10.3389/fneur.2021.699582
- Al-Ewaidat OA, Naffaa MM. Deciphering mechanisms, prevention strategies, management plans, medications, and research techniques for strokes in systemic lupus erythematosus. Medicines (Basel). 2024;11(7):15. doi: 10.3390/medicines11070015
- Al-Ewaidat OA, Naffaa MM. Stroke risk in rheumatoid arthritis patients: Exploring connections and implications for patient care. Clin Exp Med. 2024;24(1):30. doi: 10.1007/s10238-023-01288-7
- Tisler A, Stirrup O, Pisarev H, et al. Post-acute sequelae of COVID-19 among hospitalized patients in Estonia: Nationwide matched cohort study. PLoS One. 2022;17(11):e0278057. doi: 10.1371/journal.pone.0278057
- Ward A, Sarraju A, Lee D, et al. COVID-19 is associated with higher risk of venous thrombosis, but not arterial thrombosis, compared with influenza: Insights from a large US cohort. PLoS One. 2022;17(1):e0261786. doi: 10.1371/journal.pone.0261786
- Naffaa MM, Al-Ewaidat OA. Stroke risks in patients with COVID-19: Multiple mechanisms of SARS-CoV-2, impact of sex and age, vaccination, and long-term infection. Discov Med. 2024;1(1):51. doi: 10.1007/s44337-024-00059-x
- Song E, Bartley CM, Chow RD, et al. Divergent and self-reactive immune responses in the CNS of COVID- 19 patients with neurological symptoms. Cell Rep Med. 2021;2(5):100288. doi: 10.1016/j.xcrm.2021.100288
- Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19. N Engl J Med. 2020;383(10):989-992. doi: 10.1056/NEJMc2019373
- Bernard-Valnet R, Perriot S, Canales M, et al. Encephalopathies associated with severe COVID-19 present neurovascular unit alterations without evidence for strong neuroinflammation. Neurol Neuroimmunol Neuroinflamm. 2021;8(5):e1029. doi: 10.1212/NXI.0000000000001029
- Valencia Sanchez C, Theel E, Binnicker M, Toledano M, McKeon A. Autoimmune encephalitis after SARS-CoV-2 infection: Case frequency, findings, and outcomes. Neurology. 2021;97(23):e2262-e2268. doi: 10.1212/WNL.0000000000012931
- Lee MH, Perl DP, Nair G, et al. Microvascular injury in the brains of patients with Covid-19. N Engl J Med. 2021;384(5):481-483.doi: 10.1056/NEJMc2033369
- Bulfamante G, Chiumello D, Canevini MP, et al. First ultrastructural autoptic findings of SARS -Cov-2 in olfactory pathways and brainstem. Minerva Anestesiol. 2020;86(6):678-679. doi: 10.23736/S0375-9393.20.14772-2
- Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699-702. doi: 10.1002/jmv.25915
- Eden A, Kanberg N, Gostner J, et al. CSF biomarkers in patients with COVID-19 and neurologic symptoms: A case series. Neurology. 2021;96(2):e294-e300. doi: 10.1212/WNL.0000000000010977
- Heming M, Li X, Rauber S, et al. Neurological manifestations of COVID-19 feature T cell exhaustion and dedifferentiated monocytes in cerebrospinal fluid. Immunity. 2021;54(1):164-175.e6. doi: 10.1016/j.immuni.2020.12.011
- Yong SJ. Persistent brainstem dysfunction in long-COVID: A hypothesis. ACS Chem Neurosci. 2021;12(4):573-580. doi: 10.1021/acschemneuro.0c00793
- Mina Y, Enose-Akahata Y, Hammoud DA, et al. Deep phenotyping of neurologic postacute sequelae of SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm. 2023;10(4):e200097. doi: 10.1212/NXI.0000000000200097
- Mohlendick B, Schonfelder K, Breuckmann K, et al. ACE2 polymorphism and susceptibility for SARS-CoV-2 infection and severity of COVID-19. Pharmacogenet Genomics. 2021;31(8):165-171. doi: 10.1097/FPC.0000000000000436
- Maglietta G, Diodati F, Puntoni M, et al. Prognostic factors for post-COVID-19 syndrome: A systematic review and meta-analysis. J Clin Med. 2022;11(6):1541. doi: 10.3390/jcm11061541
- Fernandez-de-Las-Penas C, Arendt-Nielsen L, Diaz-Gil G, et al. Genetic association between ACE2 (rs2285666 and rs2074192) and TMPRSS2 (rs12329760 and rs2070788) polymorphisms with post-COVID symptoms in previously hospitalized COVID-19 survivors. Genes (Basel). 2022;13(11):1935. doi: 10.3390/genes13111935
- Andrews MG, Mukhtar T, Eze UC, et al. Tropism of SARS-CoV-2 for human cortical astrocytes. Proc Natl Acad Sci U S A. 2022;119(30):e2122236119. doi: 10.1073/pnas.2122236119
- Peluso MJ, Lu S, Tang AF, et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis. 2021;224(11):1839-1848. doi: 10.1093/infdis/jiab490
- Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022;22(11):657-673. doi: 10.1038/s41577-022-00684-6
- Group RC. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet. 2021;397(10285):1637-1645. doi: 10.1016/S0140-6736(21)00676-0
- Singal CMS, Jaiswal P, Seth P. SARS-CoV-2, More than a respiratory virus: Its potential role in neuropathogenesis. ACS Chem Neurosci. 2020;11(13):1887-1899. doi: 10.1021/acschemneuro.0c00251
- Groppa S, Gonzalez-Escamilla G, Eshaghi A, Meuth SG, Ciccarelli O. Linking immune-mediated damage to neurodegeneration in multiple sclerosis: Could network-based MRI help? Brain Commun. 2021;3(4):fcab237. doi: 10.1093/braincomms/fcab237
- Etemadifar M, Abhari AP, Nouri H, et al. Does COVID-19 increase the long-term relapsing-remitting multiple sclerosis clinical activity? A cohort study. BMC Neurol. 2022;22(1):64. doi: 10.1186/s12883-022-02590-9
- Zenesini C, Vignatelli L, Belotti LMB, et al. Risk of SARS-CoV-2 infection, hospitalization and death for COVID- 19 in people with Parkinson’s disease or parkinsonism over a 15-month period: A cohort study. Eur J Neurol. 2022; 29(11):3205-3217. doi: 10.1111/ene.15505
- Del Prete E, Francesconi A, Palermo G, et al. Prevalence and impact of COVID-19 in Parkinson’s disease: Evidence from a multi-center survey in Tuscany region. J Neurol. 2021;268(4):1179-1187. doi: 10.1007/s00415-020-10002-6
- Putri C, Hariyanto TI, Hananto JE, Christian K, Situmeang RFV, Kurniawan A. Parkinson’s disease may worsen outcomes from coronavirus disease 2019 (COVID-19) pneumonia in hospitalized patients: A systematic review, meta-analysis, and meta-regression. Parkinsonism Relat Disord. 2021;87:155-161. doi: 10.1016/j.parkreldis.2021.04.019
- Ferini-Strambi L, Salsone M. COVID-19 and neurological disorders: Are neurodegenerative or neuroimmunological diseases more vulnerable? J Neurol. 2021;268(2):409-419. doi: 10.1007/s00415-020-10070-8
- Szabo MP, Iba M, Nath A, Masliah E, Kim C. Does SARS- CoV-2 affect neurodegenerative disorders? TLR2, a potential receptor for SARS-CoV-2 in the CNS. Exp Mol Med. 2022;54(4):447-454. doi: 10.1038/s12276-022-00755-7
- 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19(4):1598-1695. doi: 10.1002/alz.13016
- Naughton SX, Raval U, Pasinetti GM. Potential novel role of COVID-19 in Alzheimer’s disease and preventative mitigation strategies. J Alzheimers Dis. 2020;76(1):21-25. doi: 10.3233/JAD-200537
- Jiang Y, Neal J, Sompol P, et al. Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer’s disease and related dementia. Alzheimers Dement. 2024;20:7296-7319. doi: 10.1002/alz.14089
- Natale NR, Lukens JR, Petri WA Jr. The nervous system during COVID-19: Caught in the crossfire. Immunol Rev. 2022;311(1):90-111. doi: 10.1111/imr.13114
- Rodriguez-Morales J, Guartazaca-Guerrero S, Rizo- Tellez SA, et al. Blood-brain barrier damage is pivotal for SARS-CoV-2 infection to the central nervous system. Exp Neurobiol. 2022;31(4):270-276. doi: 10.5607/en21049
- Knox EG, Aburto MR, Clarke G, Cryan JF, O’Driscoll CM. The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry. 2022;27(6):2659-2673. doi: 10.1038/s41380-022-01511-z
- Lee MH, Perl DP, Steiner J, et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain. 2022;145(7):2555-2568. doi: 10.1093/brain/awac151
- Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clin Neurol Neurosurg. 2020;194:105921. doi: 10.1016/j.clineuro.2020.105921
- Greene C, Connolly R, Brennan D, et al. Blood-brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment. Nat Neurosci. 2024;27(3):421-432. doi: 10.1038/s41593-024-01576-9
- Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien). 2017;159(2):209-225. doi: 10.1007/s00701-016-3046-3
- Greene C, Hanley N, Reschke CR, et al. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity. Nat Commun. 2022;13(1):2003. doi: 10.1038/s41467-022-29657-y
- Abdelhak A, Foschi M, Abu-Rumeileh S, et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol. 2022;18(3):158-172. doi: 10.1038/s41582-021-00616-3
- Peluso MJ, Sans HM, Forman CA, et al. Plasma markers of neurologic injury and inflammation in people with self-reported neurologic postacute sequelae of SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm. 2022;9(5):e200003. doi: 10.1212/NXI.0000000000200003
- McCarthy MJ. Circadian rhythm disruption in myalgic encephalomyelitis/chronic fatigue syndrome: Implications for the post-acute sequelae of COVID-19. Brain Behav Immun Health. 2022;20:100412. doi: 10.1016/j.bbih.2022.100412
- Montoya JG, Holmes TH, Anderson JN, et al. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc Natl Acad Sci U S A. 2017;114(34):E7150-E7158. doi: 10.1073/pnas.1710519114
- Savarraj J, Park ES, Colpo GD, et al. Brain injury, endothelial injury and inflammatory markers are elevated and express sex-specific alterations after COVID-19. J Neuroinflammation. 2021;18(1):277. doi: 10.1186/s12974-021-02323-8
- Wenzel J, Lampe J, Muller-Fielitz H, et al. The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci. 2021;24(11):1522-1533. doi: 10.1038/s41593-021-00926-1
- Taquet M, Skorniewska Z, Hampshire A, et al. Acute blood biomarker profiles predict cognitive deficits 6 and 12 months after COVID-19 hospitalization. Nat Med. 2023;29(10):2498-2508. doi: 10.1038/s41591-023-02525-y
- DeOre BJ, Tran KA, Andrews AM, Ramirez SH, Galie PA. SARS-CoV-2 spike protein disrupts blood-brain barrier integrity via RhoA activation. J Neuroimmune Pharmacol. 2021;16(4):722-728. doi: 10.1007/s11481-021-10029-0
- Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol Dis. 2020;146:105131.doi: 10.1016/j.nbd.2020.105131
- Perico L, Benigni A, Remuzzi G. SARS-CoV-2 and the spike protein in endotheliopathy. Trends Microbiol. 2024;32(1):53-67. doi: 10.1016/j.tim.2023.06.004
- Crunfli F, Carregari VC, Veras FP, et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci U S A. 2022;119(35):e2200960119. doi: 10.1073/pnas.2200960119
- Steardo L Jr., Steardo L, Scuderi C. Astrocytes and the psychiatric sequelae of COVID-19: What we learned from the pandemic. Neurochem Res. 2023;48(4):1015-1025. doi: 10.1007/s11064-022-03709-7
- Zalpoor H, Akbari A, Samei A, et al. The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19- associated neurodegenerative diseases: Inflammasome and JAK inhibitors as potential promising therapies. Cell Mol Biol Lett. 2022;27(1):10. doi: 10.1186/s11658-022-00311-1
- Madden N, Mei YZJ, Jakubiak K, et al. The link between SARS-CoV-2 related microglial reactivity and astrocyte pathology in the inferior olivary nucleus. Front Neurosci. 2023;17:1198219. doi: 10.3389/fnins.2023.1198219
- Stanca S, Rossetti M, Bongioanni P. Astrocytes as neuroimmunocytes in Alzheimer’s disease: A biochemical tool in the neuron-glia crosstalk along the pathogenetic pathways. Int J Mol Sci. 2023;24(18):13880. doi: 10.3390/ijms241813880
- Lyra ESN, Barros-Aragao FGQ, De Felice FG, Ferreira ST. Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology. 2022;209:109023. doi: 10.1016/j.neuropharm.2022.109023
- Tahira AC, Verjovski-Almeida S, Ferreira ST. Dementia is an age-independent risk factor for severity and death in COVID- 19 inpatients. Alzheimers Dement. 2021;17(11):1818-1831. doi: 10.1002/alz.12352
- Foley KE, Winder Z, Sudduth TL, et al. Alzheimer’s disease and inflammatory biomarkers positively correlate in plasma in the UK-ADRC cohort. Alzheimers Dement. 2024;20(2):1374-1386. doi: 10.1002/alz.13485
- Shajahan SR, Kumar S, Ramli MDC. Unravelling the connection between COVID-19 and Alzheimer’s disease: A comprehensive review. Front Aging Neurosci. 2023;15:1274452. doi: 10.3389/fnagi.2023.1274452
- Wahis J, Hennes M, Arckens L, Holt MG. Star power: The emerging role of astrocytes as neuronal partners during cortical plasticity. Curr Opin Neurobiol. 2021;67:174-182. doi: 10.1016/j.conb.2020.12.001
- Murphy-Royal C, Dupuis J, Groc L, Oliet SHR. Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission. J Neurosci Res. 2017;95(11):2140-2151. doi: 10.1002/jnr.24029
- Nakaso K. Roles of microglia in neurodegenerative diseases. Yonago Acta Med. 2024;67(1):1-8. doi: 10.33160/yam.2024.02.001
- Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct Target Ther. 2023;8(1):359. doi: 10.1038/s41392-023-01588-0
- Long HZ, Zhou ZW, Cheng Y, et al. The role of microglia in Alzheimer’s disease from the perspective of immune inflammation and iron metabolism. Front Aging Neurosci. 2022;14:888989. doi: 10.3389/fnagi.2022.888989
- Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217(2):459-472. doi: 10.1083/jcb.201709069
- Abate G, Memo M, Uberti D. Impact of COVID-19 on Alzheimer’s disease risk: Viewpoint for research action. Healthcare (Basel). 2020;8(3):286. doi: 10.3390/healthcare8030286
- Chiricosta L, Gugliandolo A, Mazzon E. SARS-CoV-2 exacerbates beta-amyloid neurotoxicity, inflammation and oxidative stress in Alzheimer’s disease patients. Int J Mol Sci. 2021;22(24):13603. doi: 10.3390/ijms222413603
- Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid beta-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct Target Ther. 2023;8(1):248. doi: 10.1038/s41392-023-01484-7
- Navolokin N, Adushkina V, Zlatogorskaya D, et al. Promising strategies to reduce the SARS-CoV-2 amyloid deposition in the brain and prevent COVID-19-exacerbated dementia and Alzheimer’s disease. Pharmaceuticals (Basel). 2024;17(6):788. doi: 10.3390/ph17060788
- Poloni TE, Medici V, Moretti M, et al. COVID-19-related neuropathology and microglial activation in elderly with and without dementia. Brain Pathol. 2021;31(5):e12997. doi: 10.1111/bpa.12997
- Andreu M, Matti N, Bramlett HM, Shi Y, Gajavelli S, Dietrich WD. Dose-dependent modulation of microglia activation in rats after penetrating traumatic brain injury (pTBI) by transplanted human neural stem cells. PLoS One. 2023;18(5):e0285633. doi: 10.1371/journal.pone.0285633
- Fernandez-Castaneda A, Lu P, Geraghty AC, et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell. 2022;185(14):2452-2468.e16. doi: 10.1016/j.cell.2022.06.008
- Fontes-Dantas FL, Fernandes GG, Gutman EG, et al. SARS-CoV-2 spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. Cell Rep. 2023;42(3):112189. doi: 10.1016/j.celrep.2023.112189
- Xu G, Li Y, Zhang S, et al. SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation. Cell Res. 2021;31(12):1230-1243. doi: 10.1038/s41422-021-00578-7
- Qin J, Ma Z, Chen X, Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front Neurol. 2023;14:1103416. doi: 10.3389/fneur.2023.1103416
- Almutairi MM, Sivandzade F, Albekairi TH, Alqahtani F, Cucullo L. Neuroinflammation and its impact on the pathogenesis of COVID-19. Front Med (Lausanne). 2021;8:745789. doi: 10.3389/fmed.2021.745789
- Emrani S, Arain HA, DeMarshall C, Nuriel T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: A systematic review. Alzheimers Res Ther. 2020;12(1):141. doi: 10.1186/s13195-020-00712-4
- Liu N, Sun J, Wang X, Zhao M, Huang Q, Li H. The impact of dementia on the clinical outcome of COVID-19: A systematic review and meta-analysis. J Alzheimers Dis. 2020;78(4):1775-1782. doi: 10.3233/JAD-201016
- Kuo CL, Pilling LC, Atkins JL, et al. APOE e4 genotype predicts severe COVID-19 in the UK biobank community cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2231-2232. doi: 10.1093/gerona/glaa131
- Chen F, Chen Y, Ke Q, et al. ApoE4 associated with severe COVID-19 outcomes via downregulation of ACE2 and imbalanced RAS pathway. J Transl Med. 2023;21(1):103. doi: 10.1186/s12967-023-03945-7
- Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer’s disease pathology. J Neurochem. 2024;168(10):3415-3429. doi: 10.1111/jnc.15985
- A SS, Thapliyal A, Pant K. In-silico modeling of the interplay between APOE4, NLRP3, and ACE2-SPIKE complex in neurodegeneration between Alzheimer and SARS-CoV: Implications for understanding pathogenesis and developing therapeutic strategies. J Biomol Struct Dyn. 2024;42(18):9678-9690. doi: 10.1080/07391102.2023.2252094
- Chen F, Ke Q, Wei W, Cui L, Wang Y. Apolipoprotein E and viral infection: Risks and mechanisms. Mol Ther Nucleic Acids. 2023;33:529-542. doi: 10.1016/j.omtn.2023.07.031
- Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer’s disease: How one crisis worsens the other. Transl Neurodegener. 2021;10(1):15. doi: 10.1186/s40035-021-00237-2
- Blackmon K, Day GS, Powers HR, et al. Neurocognitive screening in patients following SARS-CoV-2 infection: Tools for triage. Res Sq. [Preprint]. 2022. doi: 10.21203/rs.3.rs-1127420/v1
- Ciaccio M, Lo Sasso B, Scazzone C, et al. COVID-19 and Alzheimer’s disease. Brain Sci. 2021;11(3):305. doi: 10.3390/brainsci11030305
- Reiken S, Sittenfeld L, Dridi H, Liu Y, Liu X, Marks AR. Alzheimer’s-like signaling in brains of COVID-19 patients. Alzheimers Dement. 2022;18(5):955-965. doi: 10.1002/alz.12558
- Pszczolowska M, Walczak K, Miskow W, et al. Molecular cross-talk between long COVID-19 and Alzheimer’s disease. Geroscience. 2024;46(3):2885-2899. doi: 10.1007/s11357-024-01096-1
- Narayanan SN, Padiyath S, Chandrababu K, et al. Neurological, psychological, psychosocial complications of long-COVID and their management. Neurol Sci. 2024; 46:1-23. doi: 10.1007/s10072-024-07854-5
- Crivelli L, Palmer K, Calandri I, et al. Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis. Alzheimers Dement. 2022;18(5):1047-1066. doi: 10.1002/alz.12644
- Scialo F, Daniele A, Amato F, et al. ACE2: The major cell entry receptor for SARS-CoV-2. Lung. 2020;198(6):867-877. doi: 10.1007/s00408-020-00408-4
- Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-637. doi: 10.1002/path.1570
- Zhao Y, Li W, Lukiw W. Ubiquity of the SARS-CoV-2 receptor ACE2 and upregulation in limbic regions of Alzheimer’s disease brain. Folia Neuropathol. 2021;59(3):232-238. doi: 10.5114/fn.2021.109495
- Lindskog C, Mear L, Virhammar J, et al. Protein expression profile of ACE2 in the normal and COVID-19-affected human brain. J Proteome Res. 2022;21(9):2137-2145. doi: 10.1021/acs.jproteome.2c00184
- Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 Infectivity and neurological targets in the brain. Cell Mol Neurobiol. 2022;42(1):217-224. doi: 10.1007/s10571-020-00947-7
- Tyagi K, Rai P, Gautam A, et al. Neurological manifestations of SARS-CoV-2: Complexity, mechanism and associated disorders. Eur J Med Res. 2023;28(1):307. doi: 10.1186/s40001-023-01293-2
- Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the blood-brain barrier. Int J Mol Sci. 2021;22(5):2681. doi: 10.3390/ijms22052681
- Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, Cuevas E, Talpos JC. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun. 2021;95:7-14. doi: 10.1016/j.bbi.2020.12.031
- Miners S, Kehoe PG, Love S. Cognitive impact of COVID-19: Looking beyond the short term. Alzheimers Res Ther. 2020;12(1):170. doi: 10.1186/s13195-020-00744-w
- Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135-140. doi: 10.1016/j.bbrc.2020.03.044
- Ashraf UM, Abokor AA, Edwards JM, et al. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiol Genomics. 2021;53(2):51-60. doi: 10.1152/physiolgenomics.00087.2020
- Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020;92(7):726-730. doi: 10.1002/jmv.25785
- Guney C, Akar F. Epithelial and endothelial expressions of ACE2: SARS-CoV-2 entry routes. J Pharm Pharm Sci. 2021;24:84-93. doi: 10.18433/jpps31455
- Villa C, Rivellini E, Lavitrano M, Combi R. Can SARS-CoV-2 infection exacerbate Alzheimer’s disease? An overview of shared risk factors and pathogenetic mechanisms. J Pers Med. 2022;12(1):29. doi: 10.3390/jpm12010029
- Thakur A, Sharma V, Averbek S, et al. Immune landscape and redox imbalance during neurological disorders in COVID-19. Cell Death Dis. 2023;14(9):593. doi: 10.1038/s41419-023-06102-6
- Lim KH, Yang S, Kim SH, Joo JY. Elevation of ACE2 as a SARS-CoV-2 entry receptor gene expression in Alzheimer’s disease. J Infect. 2020;81(3):e33-e34. doi: 10.1016/j.jinf.2020.06.072
- Bland AR, Barraclough M, Trender WR, et al. Profiles of objective and subjective cognitive function in post-COVID syndrome, COVID-19 recovered, and COVID-19 naive individuals. Sci Rep. 2024;14(1):13368. doi: 10.1038/s41598-024-62050-x
- Nouraeinejad A. The link between COVID-19 and Alzheimer disease through neuroinflammation. Clin Med Res. 2023;21(3):119-121. doi: 10.3121/cmr.2023.1841
- Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023;8(1):267. doi: 10.1038/s41392-023-01486-5
- Kutzing MK, Luo V, Firestein BL. Protection from glutamate-induced excitotoxicity by memantine. Ann Biomed Eng. 2012;40(5):1170-1181. doi: 10.1007/s10439-011-0494-z
- Muller T, Riederer P, Kuhn W. Aminoadamantanes: From treatment of Parkinson’s and Alzheimer’s disease to symptom amelioration of long COVID-19 syndrome? Expert Rev Clin Pharmacol. 2023;16(2):101-107. doi: 10.1080/17512433.2023.2176301
- Adingupu DD, Soroush A, Hansen A, Twomey R, Dunn JF. Brain hypoxia, neurocognitive impairment, and quality of life in people post-COVID-19. J Neurol. 2023;270(7):3303-3314. doi: 10.1007/s00415-023-11767-2
- Ortega MA, Fraile-Martinez O, Garcia-Montero C, et al. A general overview on the hyperbaric oxygen therapy: Applications, mechanisms and translational opportunities. Medicina (Kaunas). 2021;57(9):864. doi: 10.3390/medicina57090864
- Gottfried I, Schottlender N, Ashery U. Hyperbaric oxygen treatment-from mechanisms to cognitive improvement. Biomolecules. 2021;11(10):1520.doi: 10.3390/biom11101520
- Catalogna M, Sasson E, Hadanny A, Parag Y, Zilberman- Itskovich S, Efrati S. Effects of hyperbaric oxygen therapy on functional and structural connectivity in post-COVID-19 condition patients: A randomized, sham-controlled trial. Neuroimage Clin. 2022;36:103218. doi: 10.1016/j.nicl.2022.103218
- Li J, Zheng M, Shimoni O, et al. Development of novel therapeutics targeting the blood-brain barrier: From barrier to carrier. Adv Sci (Weinh). 2021;8(16):e2101090. doi: 10.1002/advs.202101090
- Khaledi M, Sameni F, Yahyazade S, et al. COVID-19 and the potential of Janus Family Kinase (JAK) pathway inhibition: A novel treatment strategy. Front Med (Lausanne). 2022;9:961027. doi: 10.3389/fmed.2022.961027
- Zizzo G, Tamburello A, Castelnovo L, et al. Immunotherapy of COVID-19: Inside and beyond IL-6 signalling. Front Immunol. 2022;13:795315. doi: 10.3389/fimmu.2022.795315
- Akanchise T, Angelova A. Ginkgo biloba and long COVID: In vivo and in vitro models for the evaluation of nanotherapeutic efficacy. Pharmaceutics. 2023;15(5):1562. doi: 10.3390/pharmaceutics15051562
- Leira EC, Russman AN, Biller J, et al. Preserving stroke care during the COVID-19 pandemic: Potential issues and solutions. Neurology. 2020;95(3):124-133. doi: 10.1212/WNL.0000000000009713
- Ferrone SR, Sanmartin MX, Ohara J, et al. Acute ischemic stroke outcomes in patients with COVID-19: A systematic review and meta-analysis. J Neurointerv Surg. 2024;16(4):333-341. doi: 10.1136/jnis-2023-020489
- Siahaan YMT, Puspitasari V, Pangestu A. COVID-19- associated encephalopathy: Systematic review of case reports. J Clin Neurol. 2022;18(2):194-206. doi: 10.3988/jcn.2022.18.2.194
- Muccioli L, Pensato U, Bernabe G, et al. Intravenous immunoglobulin therapy in COVID-19-related encephalopathy. J Neurol. 2021;268(8):2671-2675. doi: 10.1007/s00415-020-10248-0
- Stoian A, Stoian M, Bajko Z, et al. Autoimmune encephalitis in COVID-19 infection: Our experience and systematic review of the literature. Biomedicines. 2022;10(4):774. doi: 10.3390/biomedicines10040774
- Liu CH, Chiu LC, Lee CC, Chan TM. Case report: High-dose steroid and IVIG successful treatment in a case of COVID- 19-associated autoimmune encephalitis: A literature review. Front Immunol. 2023;14:1240089. doi: 10.3389/fimmu.2023.1240089
- Pimentel V, Luchsinger VW, Carvalho GL, et al. Guillain-barre syndrome associated with COVID-19: A systematic review. Brain Behav Immun Health. 2023;28:100578. doi: 10.1016/j.bbih.2022.100578
- Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco- Velazquez MA. Neuroprotective agents with therapeutic potential for COVID-19. Biomolecules. 2023;13(11):1585. doi: 10.3390/biom13111585
- Lindan CE, Mankad K, Ram D, et al. Neuroimaging manifestations in children with SARS-CoV-2 infection: A multinational, multicentre collaborative study. Lancet Child Adolesc Health. 2021;5(3):167-177. doi: 10.1016/S2352-4642(20)30362-X
- C-MORE/PHOSP-COVID Collaborative Group. Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): A prospective, multicentre, observational cohort study. Lancet Respir Med. 2023;11(11):1003-1019. doi: 10.1016/S2213-2600(23)00262-X
- Lu Y, Li X, Geng D, et al. Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study. EClinicalMedicine. 2020;25:100484. doi: 10.1016/j.eclinm.2020.100484
- Castellano A, Anzalone N, Pontesilli S, Fominskiy E, Falini A. Pathological brain CT scans in severe COVID-19 ICU patients. Intensive Care Med. 2020;46(11):2102-2104. doi: 10.1007/s00134-020-06222-z
- Varadarajan V, Shabani M, Ambale Venkatesh B, Lima JAC. Role of imaging in diagnosis and management of COVID- 19: A multiorgan multimodality imaging review. Front Med (Lausanne). 2021;8:765975. doi: 10.3389/fmed.2021.765975
- Egbert AR, Cankurtaran S, Karpiak S. Brain abnormalities in COVID-19 acute/subacute phase: A rapid systematic review. Brain Behav Immun. 2020;89:543-554. doi: 10.1016/j.bbi.2020.07.014
- Van Lith TJ, Sluis WM, Wijers NT, et al. Prevalence and 3-month follow-up of cerebrovascular MRI markers in hospitalized COVID-19 patients: The CORONIS study. Neuroradiology. 2024;66(9):1565-1575. doi: 10.1007/s00234-024-03411-1
- Choi Y, Lee MK. Neuroimaging findings of brain MRI and CT in patients with COVID-19: A systematic review and meta-analysis. Eur J Radiol. 2020;133:109393. doi: 10.1016/j.ejrad.2020.109393
- Qin Y, Wu J, Chen T, et al. Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J Clin Invest. 2021;131(8):e147329. doi: 10.1172/JCI147329
- Tian T, Wu J, Chen T, et al. Long-term follow-up of dynamic brain changes in patients recovered from COVID-19 without neurological manifestations. JCI Insight. 2022;7(4):e155827. doi: 10.1172/jci.insight.155827
- Fineschi S, Fahlstrom M, Fallmar D, Haller S, Wikstrom J. Comprehensive MRI assessment reveals subtle brain findings in non-hospitalized post-COVID patients with cognitive impairment. Front Neurosci. 2024;18:1435218. doi: 10.3389/fnins.2024.1435218
- Du Y, Zhao W, Huang S, et al. Two-year follow-up of brain structural changes in patients who recovered from COVID-19: A prospective study. Psychiatry Res. 2023;319:114969. doi: 10.1016/j.psychres.2022.114969
- Du YY, Zhao W, Zhou XL, et al. Survivors of COVID-19 exhibit altered amplitudes of low frequency fluctuation in the brain: A resting-state functional magnetic resonance imaging study at 1-year follow-up. Neural Regen Res. 2022;17(7):1576-1581. doi: 10.4103/1673-5374.327361
- Zhao Y, Liang Q, Jiang Z, et al. Brain abnormalities in survivors of COVID-19 after 2-year recovery: A functional MRI study. Lancet Reg Health West Pac. 2024;47:101086. doi: 10.1016/j.lanwpc.2024.101086
- Churchill NW, Roudaia E, Chen JJ, et al. Effects of post-acute COVID-19 syndrome on the functional brain networks of non-hospitalized individuals. Front Neurol. 2023;14:1136408. doi: 10.3389/fneur.2023.1136408
- Jin P, Cui F, Xu M, Ren Y, Zhang L. Altered brain function and structure pre- and post- COVID-19 infection: A longitudinal study. Neurol Sci. 2024;45(1):1-9. doi: 10.1007/s10072-023-07236-3
- Li R, Liu G, Zhang X, Zhang M, Lu J, Li H. Altered intrinsic brain activity and functional connectivity in COVID-19 hospitalized patients at 6-month follow-up. BMC Infect Dis. 2023;23(1):521. doi: 10.1186/s12879-023-08331-8
- Capelli S, Arrigoni A, Napolitano A, et al. MRI evidence of gray matter loss in COVID-19 patients with cognitive and olfactory disorders. Ann Clin Transl Neurol. 2024;11(9):2457-2472. doi: 10.1002/acn3.52164
- Zhao S, Toniolo S, Hampshire A, Husain M. Effects of COVID-19 on cognition and brain health. Trends Cogn Sci. 2023;27(11):1053-1067. doi: 10.1016/j.tics.2023.08.008
- Zhou S, Wei T, Liu X, et al. Causal effects of COVID-19 on structural changes in specific brain regions: A Mendelian randomization study. BMC Med. 2023;21(1):261. doi: 10.1186/s12916-023-02952-1
- Ding P, Xu R. Causal association of COVID-19 with brain structure changes: Findings from a non-overlapping 2-sample Mendelian randomization study. J Neurol Sci. 2023;454:120864. doi: 10.1016/j.jns.2023.120864
- Zhang W, Gorelik AJ, Wang Q, et al. Associations between COVID-19 and putative markers of neuroinflammation: A diffusion basis spectrum imaging study. Brain Behav Immun Health. 2024;36:100722. doi: 10.1016/j.bbih.2023.100722
- Anderson AJ, Ren P, Baran TM, Zhang Z, Lin F. Insula and putamen centered functional connectivity networks reflect healthy agers’ subjective experience of cognitive fatigue in multiple tasks. Cortex. 2019;119:428-440. doi: 10.1016/j.cortex.2019.07.019
- Mesgarani N, Cheung C, Johnson K, Chang EF. Phonetic feature encoding in human superior temporal gyrus. Science. 2014;343(6174):1006-1010. doi: 10.1126/science.1245994
- Youn H, Choi M, Lee S, et al. Decreased cortical thickness and local gyrification in individuals with subjective cognitive impairment. Clin Psychopharmacol Neurosci. 2021;19(4):640-652. doi: 10.9758/cpn.2021.19.4.640
- Blanc F, Colloby SJ, Cretin B, et al. Grey matter atrophy in prodromal stage of dementia with Lewy bodies and Alzheimer’s disease. Alzheimers Res Ther. 2016;8:31. doi: 10.1186/s13195-016-0198-6
- Arrigoni A, Previtali M, Bosticardo S, et al. Brain microstructure and connectivity in COVID-19 patients with olfactory or cognitive impairment. Neuroimage Clin. 2024;43:103631. doi: 10.1016/j.nicl.2024.103631
- Song J, Lei T, Li Y, et al. Dynamic alterations in the amplitude of low-frequency fluctuation in patients with cerebral small vessel disease. Front Mol Neurosci. 2023;16:1200756. doi: 10.3389/fnmol.2023.1200756
- Koenigs M, Barbey AK, Postle BR, Grafman J. Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci. 2009;29(47):14980-14986. doi: 10.1523/JNEUROSCI.3706-09.2009
- Takao M, Ohira M. Neurological post-acute sequelae of SARS-CoV-2 infection. Psychiatry Clin Neurosci. 2023;77(2):72-83. doi: 10.1111/pcn.13481
- Elizalde-Diaz JP, Miranda-Narvaez CL, Martinez- Lazcano JC, Martinez-Martinez E. The relationship between chronic immune response and neurodegenerative damage in long COVID-19. Front Immunol. 2022;13:1039427. doi: 10.3389/fimmu.2022.1039427
- Li C, Verduzco-Gutierrez M. Neurologic and neuromuscular sequelae of COVID-19. Phys Med Rehabil Clin N Am. 2023;34(3):539-549. doi: 10.1016/j.pmr.2023.04.002
- Ishak A, Mehendale M, AlRawashdeh MM, et al. The association of COVID-19 severity and susceptibility and genetic risk factors: A systematic review of the literature. Gene. 2022;836:146674. doi: 10.1016/j.gene.2022.146674