AccScience Publishing / AN / Online First / DOI: 10.36922/an.4037
ORIGINAL RESEARCH ARTICLE

Unpredictable mild stress accelerates the emergence of motor deficits in a rat model of progressive parkinsonism

Laura F. M. Olivatto1† Debora M. G. Cunha1† Leonardo B. Silva1 Alvaro C. Lima1 Marcela Becegato1 Vinicius S. Bioni1 Raphael Wuo-Silva2 Deborah Suchecki3 Regina H. Silva1*
Show Less
1 Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
2 Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
3 Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
Advanced Neurology 2024, 3(4), 4037 https://doi.org/10.36922/an.4037
Submitted: 28 June 2024 | Accepted: 29 October 2024 | Published: 19 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Parkinson’s disease (PD) is a multifactorial condition associated with genetic and environmental factors. In recent years, the role of chronic psychophysiological stress as a predisposing factor for PD is gaining increasing attention. Clinical and experimental evidence indicates that chronic stress exerts adverse effects on the brain. Nevertheless, the potential role of chronic stress in the predisposition to PD remains poorly understood. This study aimed to investigate the effects of exposure to a chronic unpredictable mild stress (UMS) protocol on the onset of parkinsonism in Wistar rats repeatedly treated with a low dose of reserpine. Wistar rats were either exposed to UMS for 1 week or not exposed (control group). Then, the animals were repeatedly treated with a low dose of reserpine or vehicle every other day for 20 days. Behavioral motor evaluations were conducted using catalepsy and open field tests. Moreover, plasma corticosterone (CORT) levels and lipid peroxidation were evaluated. As expected, the UMS protocol increased plasma CORT levels, and reserpine treatment led to a progressive enhancement of cataleptic behavior. Animals exposed to UMS and treated with reserpine exhibited motor alteration earlier during the protocol. No differences were observed in oxidative stress between experimental and control groups, as evaluated through lipid peroxidation assay. Our results showed that chronic mild stress accelerated the onset of motor deficits in reserpine-treated animals.

Keywords
Oxidative stress
Corticosterone
Motor impairment
Parkinson’s disease
Neurodegeneration
Funding
This study was financed by Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (grant 2017/26253-3), and by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Brasil – CAPES (finance code 001). RHS and DS are recipients of research fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants 313631/2021-2 and 305076/2023-0).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Emamzadeh FN, Surguchov A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front Neurosci. 2018;12:612. doi: 10.3389/fnins.2018.00612

 

  1. Silva RH, Lopes-Silva LB, Cunha DG, Becegato M, Ribeiro AM, Santos JR. Animal Approaches to studying risk factors for Parkinson’s disease: A narrative review. Brain Sci. 2024;14(2):156. doi: 10.3390/brainsci14020156

 

  1. Caviness JN. Pathophysiology of Parkinson’s disease behavior--a view from the network. Parkinsonism Relat Disord. 2014;20 Suppl 1:S39-S43. doi: 10.1016/S1353-8020(13)70012-9

 

  1. Wang X, Dong T, Li X, et al. Global biomarker trends in Parkinson’s disease research: A bibliometric analysis. Heliyon. 2024;10(6):e27437. doi: 10.1016/j.heliyon.2024.e27437

 

  1. Ortega Moreno L, Bagues A, Martinez V, Abalo R. New pieces for an old puzzle: Approaching Parkinson’s disease from translatable animal models, gut microbiota modulation, and lipidomics. Nutrients. 2023;15(12):2775. doi: 10.3390/nu15122775

 

  1. Bej E, Cesare P, Volpe AR, d’Angelo M, Castelli V. Oxidative stress and neurodegeneration: Insights and therapeutic strategies for Parkinson’s disease. Neurol Int. 2024;16(3):502-517. doi: 10.3390/neurolint16030037

 

  1. Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012;2012:428010. doi: 10.1155/2012/428010

 

  1. Abaza A, Jamil A, Gutlapalli SD, et al. Parkinson’s neuropathology puzzle: A systematic review uncovering the pathological culprits behind the neurological disease. Cureus. 2023;15(8):e44353. doi: 10.7759/cureus.44353

 

  1. Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson’s disease: An update. Curr Neurol Neurosci Rep. 2024;24(6):163-179. doi: 10.1007/s11910-024-01339-w

 

  1. Zou K, Guo W, Tang G, Zheng B, Zheng Z. A case of early onset Parkinson’s disease after major stress. Neuropsychiatr Dis Treat. 2013;9:1067-1069. doi: 10.2147/NDT.S48455

 

  1. van der Heide A, Speckens AEM, Meinders MJ, Rosenthal LS, Bloem BR, Helmich RC. Stress and mindfulness in Parkinson’s disease - a survey in 5000 patients. NPJ Parkinsons Dis. 2021;7(1):7. doi: 10.1038/s41531-020-00152-9

 

  1. van der Heide A, Dommershuijsen LJ, Puhlmann LMC, et al. Predictors of stress resilience in Parkinson’s disease and associations with symptom progression. NPJ Parkinsons Dis. 2024;10(1):81. doi: 10.1038/s41531-024-00692-4

 

  1. Chinta SJ, Lieu CA, Demaria M, Laberge RM, Campisi J, Andersen JK. Environmental stress, ageing and glial cell senescence: A novel mechanistic link to Parkinson’s disease? J Intern Med. 2013;273(5):429-436. doi: 10.1111/joim.12029

 

  1. Djamshidian A, Lees AJ. Can stress trigger Parkinson’s disease? J Neurol Neurosurg Psychiatry. 2014;85(8):878-881. doi: 10.1136/jnnp-2013-305911

 

  1. Tykalova T, Rusz J, Cmejla R, Ruzickova H, Ruzicka E. Acoustic investigation of stress patterns in Parkinson’s disease. J Voice. 2014;28(1):129.e1-e8. doi: 10.1016/j.jvoice.2013.07.001

 

  1. Angelier F, Wingfield JC. Importance of the glucocorticoid stress response in a changing world: Theory, hypotheses and perspectives. Gen Comp Endocrinol. 2013;190:118-128. doi: 10.1016/j.ygcen.2013.05.022

 

  1. Zimmer C, Jimeno B, Martin LB. HPA flexibility and FKBP5: Promising physiological targets for conservation. Philos Trans R Soc Lond B Biol Sci. 2024;379(1898):20220512. doi: 10.1098/rstb.2022.0512

 

  1. Koolhaas JM, Bartolomucci A, Buwalda B, et al. Stress revisited: A critical evaluation of the stress concept. Neurosci Biobehav Rev. 2011;35(5):1291-301. doi: 10.1016/j.neubiorev.2011.02.003

 

  1. Morava A, Dillon K, Sui W, Alushaj E, Prapavessis H. The effects of acute exercise on stress reactivity assessed via a multidimensional approach: A systematic review. J Behav Med. 2024;47:545-565. doi: 10.1007/s10865-024-00470-w

 

  1. Russell G, Lightman S. The human stress response. Nat Rev Endocrinol. 2019;15(9):525-534. doi: 10.1038/s41574-019-0228-0

 

  1. Kovacs KJ. CRH: The link between hormonal-, metabolic- and behavioral responses to stress. J Chem Neuroanat. 2013;54:25-33. doi: 10.1016/j.jchemneu.2013.05.003

 

  1. Mora F, Segovia G, Del Arco A, de Blas M, Garrido P. Stress, neurotransmitters, corticosterone and body-brain integration. Brain Res. 2012;1476:71-85. doi: 10.1016/j.brainres.2011.12.049

 

  1. Sorce S, Krause KH. NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal. 2009;11(10):2481-2504. doi: 10.1089/ars.2009.2578

 

  1. Colaianna M, Schiavone S, Zotti M, et al. Neuroendocrine profile in a rat model of psychosocial stress: relation to oxidative stress. Antioxid Redox Signal. 2013;18(12):1385-1399. doi: 10.1089/ars.2012.4569

 

  1. Simola N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res. 2007;11(3- 4):151-167. doi: 10.1007/BF03033565

 

  1. Mustapha M, Mat Taib CN. MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosn J Basic Med Sci. 2021;21(4):422-433. doi: 10.17305/bjbms.2020.5181

 

  1. Santos JR, Cunha JA, Dierschnabel AL, et al. Cognitive, motor and tyrosine hydroxylase temporal impairment in a model of parkinsonism induced by reserpine. Behav Brain Res. 2013;253:68-77. doi: 10.1016/j.bbr.2013.06.031

 

  1. Cunha DMG, Becegato M, Meurer YSR, et al. Neuroinflammation in early, late and recovery stages in a progressive Parkinsonism model in rats. Front Neurosci. 2022;16:923957. doi: 10.3389/fnins.2022.923957

 

  1. Fernandes VS, Santos JR, Leao AH, et al. Repeated treatment with a low dose of reserpine as a progressive model of Parkinson’s disease. Behav Brain Res. 2012;231(1):154-163. doi: 10.1016/j.bbr.2012.03.008

 

  1. Leao AH, Meurer YS, da Silva AF, et al. Spontaneously hypertensive rats (SHR) are resistant to a reserpine-induced progressive model of Parkinson’s disease: Differences in motor behavior, tyrosine hydroxylase and alpha-synuclein expression. Front Aging Neurosci. 2017;9:78. doi: 10.3389/fnagi.2017.00078

 

  1. Beserra-Filho JIA, Maria-Macedo A, Silva-Martins S, et al. Lippia grata essential oil complexed with beta-cyclodextrin ameliorates biochemical and behavioral deficits in an animal model of progressive Parkinsonism. Metab Brain Dis. 2022;37(7):2331-2347. doi: 10.1007/s11011-022-01032-2

 

  1. Brandao LEM, Noga D, Dierschnabel AL, et al. Passiflora cincinnata extract delays the development of motor signs and prevents dopaminergic loss in a mice model of Parkinson’s disease. Evid Based Complement Alternat Med. 2017;2017:8429290. doi: 10.1155/2017/8429290

 

  1. Campelo CLC, Santos JR, Silva AF, et al. Exposure to an enriched environment facilitates motor recovery and prevents short-term memory impairment and reduction of striatal BDNF in a progressive pharmacological model of Parkinsonism in mice. Behav Brain Res. 2017;328:138-148. doi: 10.1016/j.bbr.2017.04.028

 

  1. Lins L, Souza MF, Bispo JMM, et al. Carvacrol prevents impairments in motor and neurochemical parameters in a model of progressive Parkinsonism induced by reserpine. Brain Res Bull. 2018;139:9-15. doi: 10.1016/j.brainresbull.2018.01.017

 

  1. Lopes-Silva LB, Cunha DMG, Lima AC, et al. Sleep deprivation induces late deleterious effects in a pharmacological model of Parkinsonism. Exp Brain Res. 2024;242(5):1175-1190. doi: 10.1007/s00221-024-06811-0

 

  1. Silva-Martins S, Beserra-Filho JIA, Maria-Macedo A, et al. Myrtenol complexed with beta-cyclodextrin ameliorates behavioural deficits and reduces oxidative stress in the reserpine-induced animal model of Parkinsonism. Clin Exp Pharmacol Physiol. 2021;48(11):1488-1499. doi: 10.1111/1440-1681.13563

 

  1. Kim EJ, Kim ES, Covey E, Kim JJ. Social transmission of fear in rats: The role of 22-kHz ultrasonic distress vocalization. PLoS One. 2010;5(12):e15077. doi: 10.1371/journal.pone.0015077

 

  1. Gerlach M, Riederer P. Animal models of Parkinson’s disease: An empirical comparison with the phenomenology of the disease in man. J Neural Transm (Vienna). 1996;103(8- 9):987-1041. doi: 10.1007/BF01291788

 

  1. Cabbia R, Consoli A, Suchecki D. Association of 24 h maternal deprivation with a saline injection in the neonatal period alters adult stress response and brain monoamines in a sex-dependent fashion. Stress. 2018;21(4):333-346. doi: 10.1080/10253890.2018.1456525

 

  1. Belda X, Fuentes S, Daviu N, Nadal R, Armario A. Stress-induced sensitization: The hypothalamic-pituitary-adrenal axis and beyond. Stress. 2015;18(3):269-279. doi: 10.3109/10253890.2015.1067678

 

  1. Lima AC, Meurer YSR, Bioni VS, et al. Female rats are resistant to cognitive, motor and dopaminergic deficits in the reserpine-induced progressive model of Parkinson’s disease. Front Aging Neurosci. 2021;13:757714. doi: 10.3389/fnagi.2021.757714

 

  1. Harris RB, Zhou J, Youngblood BD, Smagin GN, Ryan DH. Failure to change exploration or saccharin preference in rats exposed to chronic mild stress. Physiol Behav. 1997;63(1):91-100. doi: 10.1016/s0031-9384(97)00425-3

 

  1. Hemmerle AM, Herman JP, Seroogy KB. Stress, depression and Parkinson’s disease. Exp Neurol. 2012;233(1):79-86. doi: 10.1016/j.expneurol.2011.09.035

 

  1. Howells FM, Russell VA, Mabandla MV, Kellaway LA. Stress reduces the neuroprotective effect of exercise in a rat model for Parkinson’s disease. Behav Brain Res. 2005;165(2):210-220. doi: 10.1016/j.bbr.2005.06.044

 

  1. Lauretti E, Di Meco A, Merali S, Pratico D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson’s disease. Transl Psychiatry. 2016;6(2):e733. doi: 10.1038/tp.2016.1

 

  1. Smith LK, Jadavji NM, Colwell KL, Katrina Perehudoff S, Metz GA. Stress accelerates neural degeneration and exaggerates motor symptoms in a rat model of Parkinson’s disease. Eur J Neurosci. 2008;27(8):2133-2146. doi: 10.1111/j.1460-9568.2008.06177.x

 

  1. Wu HH, Wang S. Strain differences in the chronic mild stress animal model of depression. Behav Brain Res. 2010;213(1):94-102. doi: 10.1016/j.bbr.2010.04.041

 

  1. Rudyk C, Dwyer Z, McNeill J, et al. Chronic unpredictable stress influenced the behavioral but not the neurodegenerative impact of paraquat. Neurobiol Stress. 2019;11:100179. doi: 10.1016/j.ynstr.2019.100179

 

  1. Faria RR, Abilio VC, Grassl C, et al. Beneficial effects of vitamin C and vitamin E on reserpine-induced oral dyskinesia in rats: critical role of striatal catalase activity. Neuropharmacology. 2005;48(7):993-1001. doi: 10.1016/j.neuropharm.2005.01.014

 

  1. Teixeira AM, Reckziegel P, Muller L, et al. Intense exercise potentiates oxidative stress in striatum of reserpine-treated animals. Pharmacol Biochem Behav. 2009;92(2):231-235. doi: 10.1016/j.pbb.2008.11.015

 

  1. Chen Q, Niu Y, Zhang R, et al. The toxic influence of paraquat on hippocampus of mice: Involvement of oxidative stress. Neurotoxicology. 2010;31(3):310-316. doi: 10.1016/j.neuro.2010.02.006

 

  1. Sugama S, Sekiyama K, Kodama T, et al. Chronic restraint stress triggers dopaminergic and noradrenergic neurodegeneration: Possible role of chronic stress in the onset of Parkinson’s disease. Brain Behav Immun. 2016;51:39-46. doi: 10.1016/j.bbi.2015.08.015

 

  1. Kula J, Gugula A, Blasiak A, et al. Diverse action of repeated corticosterone treatment on synaptic transmission, neuronal plasticity, and morphology in superficial and deep layers of the rat motor cortex. Pflugers Arch. 2017;469(11):1519-1532. doi: 10.1007/s00424-017-2036-5

 

  1. Metz GA, Jadavji NM, Smith LK. Modulation of motor function by stress: A novel concept of the effects of stress and corticosterone on behavior. Eur J Neurosci. 2005;22(5):1190-1200. doi: 10.1111/j.1460-9568.2005.04285.x
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing