AccScience Publishing / AN / Online First / DOI: 10.36922/an.3799
REVIEW

Unraveling the thrombin–Alzheimer’s connection: Oral anticoagulants as potential neuroprotective therapeutics

Klaus Grossmann*
Show Less
1 Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Baden-Württemberg, Germany
Advanced Neurology 2024, 3(4), 3799 https://doi.org/10.36922/an.3799
Submitted: 30 May 2024 | Accepted: 20 September 2024 | Published: 25 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In Alzheimer’s disease (AD), toxic amyloids formed by amyloid-β (Aβ) proteins and tau are implicated in the development of inflammatory, vascular, and neurodegenerative brain disorders. Thrombin has also been recognized as a proteopathic factor involved in Aβ-induced neurovascular dysfunction. Vascular Aβ activates the contact system in the blood, stimulating the production of inflammatory bradykinin and procoagulant thrombin. Thrombin, in turn, triggers inflammation, platelet activation, and the formation of fibrinolysis-resistant, Aβ-containing fibrin clots, leading to Aß-type cerebral amyloid angiopathy and associated neuropathology. Targeting thrombin with oral anticoagulants can normalize proinflammatory and prothrombotic states, counteracting the neurovascular consequences of AD. Pre-clinical studies have shown that such interventions preserve vascular and blood–brain barrier integrity, improve cerebral blood flow and brain perfusion, and reduce parenchymal accumulations of toxic Aβ, tau, fibrin(ogen), and thrombin. These effects mitigate neuroinflammatory and neurodegenerative processes, ultimately preserving cognitive functions for a longer period. Recent observational clinical studies in patients with atrial fibrillation (AF) demonstrated that treatment with direct oral anticoagulants (DOACs) or vitamin K antagonists (VKAs) reduced the risk of dementia by up to 48% compared to non-users. The anti-dementia effects were most prominent in elderly patients but were also observed in individuals with low AF risk or newly diagnosed AF. In addition, DOACs reduced the risk of intracranial hemorrhage by approximately 50% compared to VKAs. The current review highlights the potential neuroprotective role of DOACs in AD. By preventing excessive thrombin generation caused by Aβ pathology, DOACs could protect vascular and neuronal functions, thereby slowing cognitive decline. DOACs, such as dabigatran, apixaban, and rivaroxaban, warrant further clinical investigation for their potential repurposing as disease-modifying therapeutics in AD.

Keywords
Amyloid-β proteins
Thrombin
Neurovascular dysfunction
Disease-modifying therapeutics
Direct oral anticoagulants
Alzheimer’s disease
Funding
None.
Conflict of interest
The author declares no conflict of interest.
References
  1. Stelzmann RA, Schnitzlein HN, Murtagh FR. An english translation of Alzheimer´s 1907 paper, Über eine eigenartige Erkrankung der Hirnrinde. Clin Anat. 1995;8(6):429-431. doi: 10.1002/ca.980080612

 

  1. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer´s disease at 25 years. EMBO Mol Med. 2016;8(6):595-608. doi: 10.15252/emmm.201606210

 

  1. Jucker M, Walker LC. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci. 2018;21(10):1341-1349. doi: 10.1038/s41593-018-0238-6

 

  1. Scheres SH, Ryskeldi-Falcon B, Goedert M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature. 2023;621(7980):701-710. doi: 10.1038/s41586-023-06437-2

 

  1. Garcia-Morales V, Gonzalez-Acedo A, Melguizo- Rodriguez L, et al. Current understanding of the physiopathology, diagnosis and therapeutic approach to Alzheimer’s disease. Biomedicines. 2021;9(12):1910. doi: 10.3390/biomedicines9121910

 

  1. Strickland S. Blood will out: Vascular contributions to Alzheimer’s disease. J Clin Invest. 2018;128(2):556-563. doi: 10.1172/JCI97509

 

  1. Sweeney MD, Montagne A, Sagare, AP, et al. Vascular dysfunction-the disregarded partner of Alzheimer’s disease. Alzheimers Dement. 2019;15(1):158-167. doi: 10.1016/j.jalz.2018.07.222

 

  1. Nucera A, Hachinski V. Cerebrovascular and Alzheimer disease: Fellow travelers or partners in crime? J Neurochem. 2018;144(5):513-516. doi: 10.1111/jnc.14283

 

  1. Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer´s disease: New perspectives. Brain Pathol. 2022;32(6):e13061. doi: 10.1111/bpa.13061

 

  1. Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, Van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease-one peptide, two pathways. Nat Rev Neurol. 2020;16(1):30-42. doi: 10.1038/s41582-019-0281-2

 

  1. Abbott A. Treating Alzheimer’s before it takes hold. Nature. 2022;603(7900):216-219. doi: 10.1038/d41586-022-00651-0

 

  1. Sierksma A, Escott-Price V, De Strooper B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science. 2020;370(6512):61-66. doi: 10.1126/science.abb8575

 

  1. Shabir O, Berwick J, Francis SE. Neurovascular dysfunction in vascular dementia, Alzheimer’s and atherosclerosis. BMC Neurosci. 2018;19:62. doi: 10.1186/s12868-018-0465-5

 

  1. Jeremic D, Jimenez-Diaz L, Navarro-Lopez JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: A systematic review. Ageing Res Rev. 2021;72:101496. doi: 10.1016/j.arr.2021.101496

 

  1. Grossmann K. Direct oral anticoagulants (DOACs) for targeting of thrombin, a key mediator of cerebrovascular and neuronal dysfunction in Alzheimer’s disease. Biomedicines. 2022;10(8):1890. doi: 10.3390/biomedicines10081890

 

  1. Toribo-Fernandez R, Ceron C, Tristao-Pereira C, et al. Oral anticoagulants: A plausible new treatment for Alzheimer’s disease? Br J Pharmacol. 2024;181(6):760-776. doi: 10.1111/bph.16032

 

  1. Van Dyk CH, Aisen SP, Bateman RJ, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9-21. doi: 10.1056/NEJMoa2212948

 

  1. Yang AC, Vest RT, Kern F, et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature. 2022;603(7903):885-892. doi: 10.1038/s41586-021-04369-3

 

  1. Bauzon J, Lee G, Cummings J. Repurposed agents in the Alzheimer’s disease drug development pipeline. Alzheimers Res Ther. 2020;12:98. doi: 10.1186/s13195-020-00662-x

 

  1. Beura SK, Dhapola R, Panigrahi AR, Yadav P, Kumar R, Reddy DH. Antiplatelet drugs: Potential therapeutic options for the management of neurodegenerative diseases. Med Res Rev. 2023;43:1835-1877. doi: 10.1002/med.21965

 

  1. Taubes A, Nova P, Zalocuscy KA, et al. Experimental and real-world evidence supporting the computational repurposing of bumetanide for APOE4-related Alzheimer’s disease. Nature Aging. 2021;1(10):932-947. doi: 10.1038/s43587-021-00122-7

 

  1. Grossmann K. Anticoagulants for treatment of Alzheimer’s disease. J Alzheimers Dis. 2020;77(4):1373-1382. doi: 10.3233/JAD-200610

 

  1. Grossmann K. Direct oral anticoagulants: A new therapy against Alzheimer’s disease? Neural Reg Res. 2021;16(8):1556-1557. doi: 10.4103/1673-5374.303029

 

  1. Grossmann K. Alzheimer’s disease-rationales for potential treatment with the thrombin inhibitor dabigatran. Int J Mol Sci. 2021;22(9):4805. doi: 10.3390/ijms22094805

 

  1. Singh, PK, Badimon A, Chen ZL, Strickland S, Norris EH. The contact activation system and vascular factors as alternative targets for Alzheimer’s disease therapy. Res Pract Thromb Haemost. 2021;5(4):e12504. doi: 10.1002/rth2.12504

 

  1. Reed MM. Can Apixaban Help Reduce the Risk of Dementia and Alzheimer’s Disease?; 2022. Available from: https://www. fritsmafactor.com [Last accessed on 2024 Oct 24].

 

  1. Iannucci J, Grammas P. Thrombin, a key driver of pathological inflammation in the brain. Cells. 2023;12(9):1222. doi: 10.3390/cells12091222

 

  1. Grosser T, Weber AA. Pharmakologie der Hämostase. In: Aktories K, Förstermann U, Hofmann F, Starke K, editors. Allgemeine und Spezielle Pharmakologie und Toxikologie. 12th ed. München, Germany: Elsevier; 2017. p. 465-488.

 

  1. Whittier JR, Korenyi C, Klein DF, Foley W. Prevention of degenerative disease: A controlled study of anticoagulant prophylaxis. J Chronic Dis. 1961;14:203-212. doi: 10.1016/0021-9681(61)90153-9

 

  1. Ratner J, Rosenberg G, Kral VA, Engelsmann F. Anticoagulant therapy for senile dementia. J Am Geriatr Soc. 1972;20(11):556-559. doi: 10.1111/j.1532-5415.1972.tb00758.x

 

  1. Walsh AC, Walsh BH, Melaney C. Senile-presenile dementia: Follow-up data on an effective psychotherapy-anticoagulant regimen. J Am Geriatr Soc. 1978;26(10):467-470. doi: 10.1111/j.1532-5415.1978.tb03326.x

 

  1. Shameem R, Ansell, J. Disadvantages of VKA and requirements for novel anticoagulants. Best Pract Res Clin Haematol. 2013;26(2):103-114. doi: 10.1016/j.beha.2013.07.009

 

  1. Fredenburgh JC, Weitz JI. News at XI: Moving beyond factor Xa inhibitors. J Thromb Haemo. 2023;21(7):1692-1702. doi: 10.1016/j.jtha.2023.04.021

 

  1. Azzoug C, Nuemi G, Menu D, et al. Direct oral anticoagulants versus vitamin K antagonists in individuals aged 80 years and older: An overview in 2021. Int J Environ Res Public Health. 2023;20(2):1448. doi: 10.3390/ijerph20021448

 

  1. Yamada M. Cerebral amyloid angiopathy: Emerging concepts. J Stroke. 2015;17(1):17-30. doi: 10.5853/jos.2015.17.1.17

 

  1. Zott B, Simon MM, Hong W, et al. A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science. 2019;365(6453):559-565. doi: 10.1126/science.aay0198

 

  1. Condello C, Maxwell AM, Castillo E, et al. Aβ and tau prions feature in the neuropathogenesis of down syndrome. Proc Natl Acad Sci USA. 2022;119(46):e2212954119. doi: 10.1073/pnas.2212954119

 

  1. Busch L, Eggert S, Endres K, Bufe B. The hidden role of non-canonical amyloid β isoforms in Alzheimer’s disease. Cells. 2022;11(21):3421. doi: 10.3390/cells11213421

 

  1. Fagan A, Xiong CX Jasielec MS, et al. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci Transl Med. 2014;6(226):226ra30. doi: 10.1126/scitranslmed.3007901

 

  1. Preische O, Schultz SA Apel A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med. 2019;25(2):277-283. doi: 10.1038/s41591-018-0304-3

 

  1. Broce IJ, Tan CH, Fan CC, et al. Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer’s disease. Acta Neuropath. 2019;137:209-226. doi: 10.1007/s00401-018-1928-6

 

  1. Rother C, Uhlmann RE, Müller SA, et al. Experimental evidence for temporal uncoupling of brain Aβ deposition and neurodegenerative sequelae. Nat Com. 2022;13(1):7333. doi: 10.1038/s41467-022-34538-5

 

  1. Gilbert MA, Fatima N, Jenkins J, et al. CryoET of β-amyloid and tau within postmortem Alzheimer’s disease brain. Nature. 2024;631(8022):913-919. doi: 10.1038/s41586-024-07680-x

 

  1. Yubolphan R, Pratchayasakul W, Koonrungsesomboon N, Chattipakorn N, Chattipakorn SC. Potential links between platelets and amyloid-β in the pathogenesis of Alzheimer’s disease: Evidence from in vitro, in vivo, and clinical studies. Exp Neurol. 2024;374:114683. doi: 10.1016/j.expneurol.2024.114683

 

  1. Habashi M, Vutla S, Tripathi K, et al. Early diagnosis and treatment of Alzheimer’s disease by targeting toxic soluble Aβ oligomers. Proc Natl Acad Sci USA. 2022;119(49):e2210766119. doi: 10.1073/pnas.2210766119

 

  1. Treder MS, Chares I, Michelmann S, et al. The hippocampus as the switchboard between perception and memory. Proc Natl Acad Sci USA. 2021;118(50):e2114171118. doi: 10.1073/pnas.2114171118

 

  1. Yuan P, Zhang, M, Tong L, et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature. 2022;612(7939):328-337. doi: 10.1038/s41586-022-05491-6

 

  1. Aoyagi A Condello C, Stöhr J, et al. Aß and tau prion-like activities decline with longevity in the Alzheimer’s disease human brain. Sci Transl Med. 2019;11(490):eaat8462.

 

  1. Scheffer S, Hermkens AM, Van der Weerd L, De Vries HE, Daemen MJ. Vascular hypothesis of Alzheimer’s disease. Arterioscler Thromb Vasc Biol. 2021;41:1265-1283.

 

  1. Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185-191. doi: 10.1038/s41586-018-0368-8

 

  1. Zamolodchikov D, Chen Z.L, Conti BA, Renne T, Strickland S. Activation of the factor XII-driven contact system in Alzheimer’s disease patient and mouse model plasma. Proc Natl Acad Sci USA. 2015;112(13):4068-4073. doi: 10.1073/pnas.1423764112

 

  1. Zamolodchikov D, Renne T, Strickland S. The Alzheimer’s disease peptide β-amyloid promotes thrombin generation through activation of coagulation factor XII. J Thromb Haemost. 2016;14(5):995-1007.

 

  1. Cortes-Canteli M, Paul J, Norris EH, et al. Fibrinogen and β-amyloid association alters thrombosis and fibrinolysis: A possible contributing factor to Alzheimer’s disease. Neuron. 2010;66(5):695-709. doi: 10.1016/j.neuron.2010.05.014

 

  1. Donohue M, Sperling RA, Petersen R, Sun CK, Weiner MW, Aisen PS. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA. 2017;317(22):2305-2316. doi: 10.1001/jama.2017.6669

 

  1. Ghosh U, Yau WM, Collinge J, Tycko R. Structural differences in amyloid-β fibrils from brains of nondemented elderly individuals and Alzheimer’s disease patients. Proc Natl Acad Sci USA. 2021;118(45):e2111863118. doi: 10.1073/pnas.2111863118

 

  1. Jensen AM, Kitago Y, Fazeli E, et al. Dimerization of the Alzheimer’s disease pathogenic receptor SORLA regulates its association with retromer. Proc Natl Acad Sci USA. 2023;120(4):e2212180120. doi: 10.1073/pnas.2212180120

 

  1. Sun YY, Wang Z, Huang HC. Roles of ApoE4 on the pathogenesis in Alzheimer’s disease and the potential therapeutic approaches. Cell Mol Neurobiol. 2023;43(7):3115-3136. doi: 10.1007/s10571-023-01365-1

 

  1. Blanchard JW, Akay LA, Davila-Velderrain J, et al. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature. 2022;611(7937):769-779. doi: 10.1038/s41586-022-05439-w

 

  1. Xiong M, Jiang H, Serrano JR, et al. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci Transl Med. 2021;13:eabd7522. doi: 10.1126/scitranslmed.abd7522

 

  1. Wang H, Kulas J.A, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci USA. 2021;118(33):e2102191118. doi: 10.1073/pnas.2102191118

 

  1. Hultman K, Strickland S, Norris EH. The APOE e4/e4 genotype potentiates vascular fibrin(ogen) deposition in amyloid-laden vessels in the brains of Alzheimer’s disease patients. J Cerebral Blood Flow Metab. 2013;33(8):1251-1258. doi: 10.1038/jcbfm.2013.76

 

  1. Parhizkar S, Arzberger T, Brendel M, et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat Neurosci. 2019,22(2):191-204. doi: 10.1038/s41593-018-0296-9

 

  1. Schoch KM, Ezerskiy LA, Morhaus MM, et al. Acute Trem2 reduction triggers increased microglial phagocytosis, slowing amyloid deposition in mice. Proc Natl Acad Sci USA. 2021;118(27):e2100356118. doi: 10.1073/pnas.2100356118

 

  1. Korte N, Nortley, R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer’s disease. Acta Neuropath. 2020;140(6):793-810. doi: 10.1007/s00401-020-02215-w

 

  1. Jellinger KA. Alzheimer disease and cerebrovascular pathology: An update. J Neural Transm (Vienna). 2002;109(5-6):813-836. doi: 10.1007/s007020200068

 

  1. Maier FC, Wehrl HF, Schmid AM, et al. Longitudinal PET-MRI reveals β-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. Nat Med. 2014;20(12):1485-1492. doi: 10.1038/nm.3734

 

  1. Eisele YS, Obermüller U, Heilbronner G, et al. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science. 2010;330(6006):980-982. doi: 10.1126/science.1194516

 

  1. Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50-56. doi: 10.1038/nature19323

 

  1. Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early symptomatic Alzheimer disease: The TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023;330(6):512-527. doi: 10.1001/jama.2023.13239

 

  1. Vukmir RB. Amyloid-related imaging abnormalities (ARIA): Diagnosis, management, and care in the setting of amyloid-modifying therapy. Ann Clin Transl Neurol. 2024;11:1669- 1680. doi: 10.1002/acn3.52042

 

  1. Chang CW, Shao E, Mucke L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science. 2021;371(6532):eabb8255. doi: 10.1126/science.abb8255

 

  1. Chen X, Firulyova M, Manis M, et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature. 2023;615(7953):668-677. doi: 10.1038/s41586-023-05788-0

 

  1. He Z, Guo JL, McBridge JD, et al. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med. 2018;241:29-38. doi: 10.1038/nm.4443

 

  1. Aguilar-Pineda JA, Vera-Lopez KJ, Shrivastava P, et al. Vascular smooth muscle cell dysfunction contribute to neuroinflammation and tau hyperphosphorylation in Alzheimer disease. Science. 2021;24(9):102993. doi: 10.1016/j.isci.2021.102993

 

  1. Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms linking cerebrovascular dysfunction and tauopathy: Adding a layer of epiregulatory complexity. Br J Pharmacol. 2024;181(6):879-895. doi: 10.1111/bph.16280

 

  1. Onyango I, Jauregui GV, Carna M, Bennett JP Jr., Stokin GB. Neuroinflammation in Alzheimer’s disease. Biomedicines. 2021;9(5):524. doi: 10.3390/biomedicines9050524

 

  1. Grammas P, Samany PG, Thirumangalakudi L. Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: Implications for disease pathogenesis. J Alzheimers Dis. 2006;9(1):51-58. doi: 10.3233/jad-2006-9105

 

  1. BartelsT, De Schepper S, Hong S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science. 2020;370(6512):66-69. doi: 10.1126/science.abb8587

 

  1. Butler CA, Popescu AS, Kitchener EJ, Allendorf DH, Puigdellivol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem. 2021;158(3):621-639. doi: 10.1111/jnc.15327

 

  1. Kim SK, Sharma C, Jung UJ, Kim SR. Pathophysiological role of microglial activation induced by blood-borne proteins in Alzheimer’s disease. Biomedicines. 2023;11(5):1383. doi: 10.3390/biomedicines11051383

 

  1. Venegas C, Kumar S, Franklin BS, et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature. 2017;552(7685):355-361. doi: 10.1038/nature25158

 

  1. Hur JY, Frost GF, Wu X, et al. The innate immunity protein IFITM3 modulates g-secretase in Alzheimer’s disease. Nature. 2020;586(7831):735-740. doi: 10.1038/s41586-020-2681-2

 

  1. McAlpine CS, Park J, Griciuc A, et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature. 2021;595(7869):701-706. doi: 10.1038/s41586-021-03734-6

 

  1. Vellecco V, Saviano, A, Raucci F, et al. Interleukin-17 (IL-17) triggers systemic inflammation, peripheral vascular dysfunction, and related prothrombotic state in a mouse model of Alzheimer’s disease. Pharmacol Res. 2023;187:106595. doi: 10.1016/j.phrs.2022.106595

 

  1. Wiesmann M, Zerbi V, Jansen D, et al. Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice. Theranostics. 2017;7(5):12771289. doi: 10.7150/thno.18509

 

  1. Profaci CP, Munij RN, Pulido RS, Daneman R. The blood-brain barrier in health and disease: Important unanswered questions. J Exp Med. 2020;217(4):e20190062. doi: 10.1084/jem.20190062

 

  1. Quintana DD, Anantula Y, Garcia JA, et al. Microvascular degeneration occurs before plaque onset and progresses with age in 3xTg AD mice. Neurobiol Aging. 2021;105:115-128. doi: 10.1016/j.neurobiolaging.2021.04.019

 

  1. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans AC, The Alzheimer’s Disease Neuroimaging Initiative. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934. doi: 10.1038/ncomms11934

 

  1. Nortley, R, Korte N, Izquierdo P, et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science. 2019;365(6450):eaav9518. doi: 10.1126/science.aav9518

 

  1. Cortes-Canteli M, Kruyer A, Fernandez-Nueda I, et al. Long-term dabigatran treatment delays Alzheimer’s disease pathogenesis in the TgCRND8 mouse model. J Am Coll Cardiol. 2019;74(15):1910-1923. doi: 10.1016/j.jacc.2019.07.081

 

  1. DeSimone CV, Graff-Radford J, El-Harasis MA, Rabinstein AA, Asirvatham SJ, Holmes DR Jr. Cerebral amyloid angiopathy: Diagnosis, clinical implications, and management strategies in atrial fibrillation. J Am Coll Cardiol. 2017;70(9):1173-1182. doi: 10.1016/j.jacc.2017.07.724

 

  1. Jaunmuktane Z, Mead S, Ellis M, et al. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature. 2015;525(7568):247-250. doi: 10.1038/nature15369

 

  1. Banerjee G, Farmer SF, Hyare H, et al. Iatrogenic Alzheimer’s disease in recipients of cadaveric pituitary-derived growth hormone. Nat Med. 2024;30(2):394-402. doi: 10.1038/s41591-023-02729-2

 

  1. Wang J, Gu BJ, Masters, CL, Wang YJ. A systemic view of Alzheimer’s disease-insights from amyloid-β metabolism beyond the brain. Nat Rev. 2017;13:612-623. doi: 10.1038/nrneurol.2017.111

 

  1. Cruz Hernandez JC, Bracko O, Kersbergen CJ, et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat Neurosci. 2019;22(3):413-420. doi: 10.1038/s41593-018-0329-4

 

  1. Badimon, A, Torrente D, Norris EH. Vascular dysfunction in Alzheimer’s disease: Alterations in the plasma contact and fibrinolytic systems. Int J Mol Sci. 2023;24(8):7046. doi: 10.3390/ijms24087046

 

  1. Cortes-Canteli M, Mattei L, Richards AT, Norris EH, Strickland S. Fibrin deposited in the Alzheimer’s disease brain promotes neuronal degeneration. Neurobiol Aging. 2015;36(2):608-617. doi: 10.1016/j.neurobiolaging.2014.10.030

 

  1. Ahn HJ, Zamolodchikov D, Cortes-Canteli M, Norris EH, Glickman JF, Strickland S. Alzheimer’s disease peptide beta-amyloid interacts with fibrinogen and induces its oligomerization. Proc Natl Acad Sci U S A. 2010;107(50):21812-21817. doi: 10.1073/pnas.1010373107

 

  1. Bian Z, Yamashita T, Shi X, et al. Accelerated accumulation of fibrinogen peptide chains with Aβ deposition in Alzheimer’s disease (AD) mice and human brains. Brain Res. 2021;1767:147569. doi: 10.1016/j.brainres.2021.147569

 

  1. Singh PK, Chen ZL, Ghosh D, Strickland S, Norris EH. Increased plasma bradykinin level is associated with cognitive impairment in Alzheimer’s patients. Neurobiol Dis. 2020;139:104833. doi: 10.1016/j.nbd.2020.104833

 

  1. Bian Z, Feng T, Yu X, et al. Protective effect of rivaroxaban against amyloid pathology and neuroinflammation through inhibiting PAR-1 and PAR-2 in Alzheimer’s disease mice. J Alzheimers Dis. 2022;86(1):111-123. doi: 10.3233/JAD-215318

 

  1. Bergamaschini L, Rossi E, Storini C, et al. Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and beta-amyloid accumulation in a mouse model of Alzheimer’s disease. J Neurosci. 2004;24(17):4181-4186. doi: 10.1523/JNEUROSCI.0550-04.2004

 

  1. Timmer NM, Van Dijk L, Van der Zee CE, Kiliaan A, De Waal RM, Verbeek MM. Enoxaparin treatment administered at both early and late stages of amyloid β deposition improves cognition of APPswe/PS1dE9 mice with differential effects on brain Aβ levels. Neurobiol Dis. 2010;40(1):340-347. doi: 10.1016/j.nbd.2010.06.008

 

  1. Friberg L, Rosenqvist M. Less dementia with oral anticoagulation in atrial fibrillation. Eur Heart J. 2018;39(6):453-460. doi: 10.1093/eurheartj/ehx579

 

  1. Tripathy D, Sanchez A, Yin X, Luo J, Martinez J, Grammas P. Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia. Front Aging Neurosci. 2013;5:19. doi: 10.3389/fnagi.2013.00019

 

  1. Kantor AB, Akassoglou K, Stavenhagen JB. Fibrin-targeting immunotherapy for dementia. J Prev Alzheimers Dis. 2023;4(10):647-660. doi: 10.14283/jpad.2023.105

 

  1. Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost. 2005;3(8):1800-1814. doi: 10.1111/j.1538-7836.2005.01377.x

 

  1. Cajamarca SA, Norris EH, Van der Weerd L, Strickland S, Ahn HJ. Cerebral amyloid angiopathy-linked β-amyloid mutations promote cerebral fibrin deposits via increased binding affinity to fibrinogen. Proc Natl Acad Sci USA. 2020;117(25):14482-14492. doi: 10.1073/pnas.1921327117

 

  1. Wen T, Zhang Z. Cellular mechanisms of fibrin (ogen): Insight from neurodegenerative diseases. Front Neurosci. 2023;17:1197094. doi: 10.3389/fnins.2023.1197094

 

  1. Choi SH, Lee DY, Kim SU, Jin BK. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: Role of microglial NADPH oxidase. J Neurosci. 2005;25(10):4082-4090. doi: 10.1523/JNEUROSCI.4306-04.2005

 

  1. Bihaqi SW, Rao HV, Sen A, Grammas P. Dabigatran reduces thrombin-induced neuroinflammation and AD markers in vitro: Therapeutic relevance for Alzheimer’s disease. Cerebr Circu-Cogn Behav. 2021;2:100014. doi: 10.1016/j.cccb.2021.100014

 

  1. Van Oijen M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MMB. Fibrinogen is associated with an increased risk of Alzheimer disease and vascular dementia. Stroke. 2005;36(12):2637-2641. doi: 10.1161/01.STR.0000189721.31432.26

 

  1. Ryu JK, Rafalski VA, Meyer-Franke A, et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat Immunol. 2018;19(11):1212-1223. doi: 10.1038/s41590-018-0232-x

 

  1. Silva LM, Doyle AD, Greenwell-Wild T, et al. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science. 2021;374(6575):1575. doi: 10.1126/science.abl5450

 

  1. Salminen A, Kauppinen A, Kaarniranta K. Hypoxia/ ischemia activate processing of amyloid precursor protein: Impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease. J Neurochem. 2017;140(4):536-549. doi: 10.1111/jnc.13932

 

  1. Ahn HJ, Glickman JF, Poon KL, et al. A novel Aβ-fibrinogen interaction inhibitor rescues altered thrombosis and cognitive decline in Alzheimer’s disease mice. J Exp Med. 2014;211(6):1049-1062. doi: 10.1084/jem.20131751

 

  1. Roher AE, Debbins JP, Malek-Ahmadi M, et al. Cerebral blood flow in Alzheimer’s disease. Vasc Health Risk Manag. 2012;8:599-611. doi: 10.2147/VHRM.S34874

 

  1. Asslani I, Habeck C, Scarmeas N, Borodovac A, Brown TR, Stern Y. Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer’s disease. J Cereb Blood Flow Metab. 2008;28(4):725-736. doi: 10.1038/sj.jcbfm.9600570

 

  1. Zhang H, Wang Y, Lyu D, et al. Cerebral blood flow in mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Aging Res Rev. 2021;71:101450. doi: 10.1016/j.arr.2021.101450

 

  1. Müller S, Preische O, Sohrabi HR, et al. Relationship between physical activity, cognition, and Alzheimer pathology in autosomal dominant Alzheimer’s disease. Alzheimers Dement. 2018;14(11):1427-1437. doi: 10.1016/j.jalz.2018.06.3059

 

  1. Montagne A, Nation DA, Sagare AP, et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature. 2020;581(7806):71-76. doi: 10.1038/s41586-020-2247-3

 

  1. Marangoni MN, Braun D, Situ A, et al. Differential effects on glial activation by a direct versus an indirect thrombin inhibitor. J Neuroimmunol. 2016;297:159-168. doi: 10.1016/j.jneuroim.2016.05.018

 

  1. Iannucci J, Johnson SL, Majchrazak M, et al. Short-term treatment with dabigatran alters protein expression patterns in a late-stage tau-based Alzheimer’s disease mouse model. Biochem Biophys Rep. 2020;24:100862. doi: 10.1016/j.bbrep.2020.100862

 

  1. Bunch TJ, May HT, Cutler MJ, et al. Impact of anticoagulation therapy on the cognitive decline and dementia in patients with non-valvular atrial fibrillation (cognitive decline and dementia in patients with non-valvular atrial fibrillation (CAF) Trial. J Arrhythm. 2022;38:997-1008. doi: 10.1002/joa3.12781

 

  1. Agarwal R, Tully PJ, Mahajan R. Cognitive function in atrial fibrillation: A narrative review of evidence and mechanisms. Heart Mind. 2024;8(2):100-110. doi: 10.4103/hm.HM-D-23-00075

 

  1. Friberg L, Andersson T, Rosenqvist M. Less dementia and stroke in low-risk patients with atrial fibrillation taking oral anticoagulation. Eu Heart J. 2019;40(28):2327-2335. doi: 10.1093/eurheartj/ehz304

 

  1. Mongkhon P, Fanning L, Lau WCY, et al. Oral anticoagulant and reduced risk of dementia in patients with atrial fibrillation: A population-based cohort study. Heart Rhythm. 2020;17(5 Pt A):706-713. doi: 10.1016/j.hrthm.2020.01.007

 

  1. Rahman AA, Michaud J, Dell’Aniello S, et al. Oral anticoagulants and the risk of dementia in patients with nonvalvular atrial fibrillation: A population-based cohort study. Neurology. 2023;100(12):e1309-e1320. doi: 10.1212/WNL.0000000000206748

 

  1. Jacobs V, May HT, Bair TL, et al. Long-term population-based cerebral ischemic event and cognitive outcomes of direct oral anticoagulants compared with warfarin among long-term anticoagulated patients for atrial fibrillation. Am J Cardiol. 2016;118(2):210-214. doi: 10.1016/j.amjcard.2016.04.039

 

  1. Cheng W, Liu W, Li B, Li D. Relationship of anticoagulant therapy with cognitive impairment among patients with atrial fibrillation. A meta-analysis and systemic review. J Cardiovasc Pharmocol. 2018;71(6):380-387. doi: 10.1097/FJC.0000000000000575

 

  1. Mongkhon P, Naser AY, Fanning L, et al. Oral anticoagulants and risk of dementia: A systematic review and meta-analysis of observational studies and randomized controlled trials. Neurosci Biobehav Rev. 2019;96:1-9. doi: 10.1016/j.neubiorev.2018.10.025

 

  1. Latif F, Nasir MM, Meer KK, et al. The effect of oral anticoagulants on the incidence of dementia in patients with atrial fibrillation: A systematic review and meta-analysis. Int J Cardiol Cardiovasc Risk Prev. 2024;21:200282. doi: 10.1016/j.ijcrp.2024.200282

 

  1. Ho BL, Hsieh SW, Chou PS, Yang YH. Effects of dabigatran on dementia pathogenesis and neuropsychological function: A review. J Alzheimers Dis. 2022;86(4):1589-1601. doi: 10.3233/JAD-215513

 

  1. Zhang C, Gu Z-C, Shen L, et al. Non-vitamin K antagonist oral anticoagulants and cognitive impairment in atrial fibrillation: Insights from the meta-analysis of over 90,000 patients of randomized controlled trials and real-world studies. Front Aging Neurosci. 2018;10:258. doi: 10.3389/fnagi.2018.00258

 

  1. Sagris D, Ntaios G, Buckley BJR, et al. Direct oral anticoagulants are associated with lower risk of dementia in patients with atrial fibrillation. Eur J Intern Med. 2024;121:114-120. doi: 10.1016/j.ejim.2023.10.033

 

  1. Chen N, Lutsey PL, MacLehose RF, et al. Association of oral anticoagulant type with risk of dementia among patients with nonvalvular atrial fibrillation. J Am Heart Assoc. 2018;7(6):e009561. doi: 10.1161/JAHA.118.009561

 

  1. Lee SR, Choi EK, Park SH, et al. Comparing warfarin and 4 direct oral anticoagulants for the risk of dementia in patients with atrial fibrillation. Stroke. 2021;52(11):3459-3468. doi: 10.1161/STROKEAHA.120.033338

 

  1. Hsu JY, Liu PPS, Liu AB, Lin SM, Huang HK, Loh CH. Lower risk of dementia in patients with atrial fibrillation taking non-vitamin K antagonist oral anticoagulants: A nationwide population-based cohort study. J Am Heart Assoc. 2021;10(5):e016437. doi: 10.1161/JAHA.120.016437

 

  1. Kim D, Yang PS, Jang E, et al. Association of anticoagulant therapy with risk of dementia among patients with atrial fibrillation. Europace. 2021;23(2):184-195. doi: 10.1093/europace/euaa192

 

  1. Bezabhe WM, Bereznicki LR, Radford J, et al. Oral anticoagulant treatment and the risk of dementia in patients with atrial fibrillation: A population-based cohort study. J Am Heart Assoc. 2022;11(7):e023098. doi: 10.1161/JAHA.121.023098

 

  1. Lee ZX, Ang E, Lim XT, Arain SJ. Association of risk of dementia with direct oral anticoagulants versus warfarin use in patients with non-valvular atrial fibrillation: A systematic review and meta-analysis. J Cardiovas Pharmacol. 2021;77(1):22-31. doi: 10.1097/FJC.0000000000000925

 

  1. Wang W, Fan W, Su Y, Hong K. A comparison of the effects of NOAC and VKA therapy on the incidence of dementia in patients with atrial fibrillation: A systematic review and meta-analysis. Clin Cardiol. 2023;46(8):866-876. doi: 10.1002/clc.24076

 

  1. Grymonprez M, Petrovic M, De Backer TL, Ikram MA, Steurbaut S, Lahousse L. Comparing the risk of dementia in subjects with atrial fibrillation using non-vitamin K antagonist oral anticoagulants versus vitamin K antagonists: A Belgian nationwide cohort study. Age Ageing. 2023;52(3):afad038. doi: 10.1093/ageing/afad038

 

  1. Cadogan SL, Powell E, Wing K, Wong AY, Smeeth L, Warren- Gash C. Anticoagulant prescribing for atrial fibrillation and risk of incident dementia. Heart. 2021;107(23):1898-1904. doi: 10.1136/heartjnl-2021-319672

 

  1. Branco DR, Alves M, Sousa CS, Costa J, Ferreira JJ, Caldeira D. Direct oral anticoagulants vs vitamin K antagonist on dementia risk in atrial fibrillation: Systematic review with meta-analysis. J Thromb Thrombolysis. 2023;56(3):474-484. doi: 10.1007/s11239-023-02843-5

 

  1. Fong KY, Chan YH, Wang Y, et al. Dementia risk of direct oral anticoagulants versus warfarin for atrial fibrillation: Systematic review and meta-analysis. JACC: Asia. 2023;3(5):776-786. doi: 10.1016/j.jacasi.2023.07.012

 

  1. Caramelli B, Yu PC, Cardozo FAM, et al. Effects of dabigatran versus warfarin on 2-year cognitive outcomes in old patients with atrial fibrillation: Results from the GIRAF randomized clinical trial. BMC Medicine. 2022;20(1):374. doi: 10.1186/s12916-022-02563-2

 

  1. Søgaard M, Skjøth F, Jensen M, et al. Nonvitamin K antagonist oral anticoagulants versus warfarin in atrial fibrillation patients and risk of dementia: A nationwide propensity-weighted cohort study. J Am Heart Assoc. 2019;8(11):e011358. doi: 10.1161/JAHA.118.011358

 

  1. Thunell J, Wood K, Wharton W, Joyce G, Ferido P, Zissimopoulos J. Population dementia incidence and direct oral anticoagulant use in a representative population with atrial fibrillation. Neurology. 2024;103(1):e209568. doi: 10.1212/WNL.0000000000209568

 

  1. Kalantarian S, Stern T, Mansour M, Ruskin JN. Cognitive impairment associated with atrial fibrillation: A meta-analysis. Ann Intern Med. 2013;158(5 pt 1):338-346. doi: 10.7326/0003-4819-158-5-201303050-00007

 

  1. Silva RMF, Miranda CM, Liu T, Tse G, Roever L. Atrial fibrillation and risk of dementia: Epidemiology, mechanisms, and effect of anticoagulation. Front Neurosci. 2019;13:18. doi: 10.3389/fnins.2019.00018

 

  1. Kalloo AE, Slouha E, Gallagher CP, Razeq Z, Gorantla VR. Anticoagulants and dementia: A systematic review. Cureus. 2023;15(5):e39693. doi: 10.7759/cureus.39693

 

  1. Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet. 2014;383(9921):955-962. doi: 10.1016/S0140-6736(13)62343-0

 

  1. Lip GYH, Keshishian A, Li X, et al. Effectiveness and safety of oral anticoagulants among nonvalvular atrial fibrillation patients. Stroke. 2018;49(12):2933-2944. doi: 10.1161/STROKEAHA.118.020232

 

  1. Fanning L, Lau WCY, Mongkhon, P, et al. Safety and effectiveness of direct oral anticoagulants vs warfarin in people with atrial fibrillation and dementia. J Am Med Dir Assoc. 2020;21(8):1058-1064. doi: 10.1016/j.jamda.2019.11.022

 

  1. Bonand C, Garcia-Blas S, Llergo JT, et al. Direct oral anticoagulants versus warfarin in octogenarians with nonvalvular atrial fibrillation: A systematic review and meta-analysis. J Clin Med. 2021;10(22):5268. doi: 10.3390/jcm10225268

 

  1. Graham DJ, Reichman ME, Wernecke M, et al. Cardiovascular, bleeding, and mortality risks in elderly medicare patients treated with dabigatran or warfarin for nonvalvular atrial fibrillation. Circulation. 2015;131(2):157-164. doi: 10.1161/CIRCULATIONAHA.114.012061

 

  1. Graham DJ, Reichman ME, Wernecke M, et al. Stroke, bleeding, and mortality risks in elderly medicare beneficiaries treated with dabigatran or rivaroxaban for nonvalvular atrial fibrillation. JAMA Intern Med. 2016;176(11):1662-1671. doi: 10.1001/jamainternmed.2016.5954

 

  1. Ferro CJ, Solkhon F, Jalal Z, Al-Hamid AM, Jones AM. Relevance of physicochemical properties and functional pharmacology data to predict the clinical safety profile of direct oral anticoagulants. Pharmacol Res Perspect. 2020;8(3):e00603. doi: 10.1002/prp2.603

 

  1. Lopez-Lopez JA, Sterne JA, Thom HHZ, et al. Oral anticoagulants for prevention of stroke in atrial fibrillation: Systematic review, network meta-analysis, and cost effectiveness analysis. BMJ. 2017;359:j5058. doi: 10.1136/bmj.j5058

 

  1. Connolly MD, Ezekowitz MD, Yusus S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139-1151. doi: 10.1056/NEJMoa0905561

 

  1. Granger CB, Alexander JH, McMurray JJV, et al. Apixaban versus warfarin in patients with atrial fibrillation according to prior warfarin use: Results from the apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation trial. N Engl J Med. 2011;365(11):981-992. doi: 10.1016/j.ahj.2013.05.016

 

  1. Lin KJ, Singer DE, Bykov K, et al. Comparative effectiveness and safety of oral anticoagulants by dementia status in older patients with atrial fibrillation. JAMA Network Open. 2023;6(3):e234086. doi: 10.1001/jamanetworkopen.2023.4086

 

  1. Zirlik A, Bode C. Vitamin K antagonists: Relative strengths and weaknesses vs. direct oral anticoagulants for stroke prevention in patients with atrial fibrillation. J Thromb Thrombolysis. 2017;43(3):365-379. doi: 10.1007/s11239-016-1446-0

 

  1. Rivard L, Khairy P, Talajic M, et al. Blinded randomized trial of anticoagulation to prevent ischemic stroke and neurodegenerative impairment in Atrial Fibrillation (BRAIN-AF): Methods and design. Can J Cardiol. 2019;35(8):1069-1077. doi: 10.1016/j.cjca.2019.04.022

 

  1. ClinicalTrials.Gov. A Novel Therapeutic Target for Alzheimer’s disease in Men and Women 50-85 Years of Age. Available from: https://clinicaltrials.gov/ct2/show/NCT03752294 [Last accessed on 2024 Feb 12].

 

  1. Therriault J, Schindler S.E, Salvado G, et al. Biomarker-based staging of Alzheimer disease: Rationale and clinical applications. Nat Rev Neurol. 2024;20(4):232-244. doi: 10.1038/s41582-024-00942-2
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing