AccScience Publishing / AJWEP / Volume 21 / Issue 5 / DOI: 10.3233/AJW240063
RESEARCH ARTICLE

A Study of the Analysis of Chlorophyll-a Phytoplankton in the Tigris Rivers for Some Regions of Iraq by Using GIS Techniques

Rawaa Nader Al-Saedy2* Jinan S. Al-Hassany2 Fouad K. Mashee Al-Ramahi1
Show Less
1 Remote Sensing Unit, College of Science, University of Baghdad, Baghdad, Iraq
2 Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq
AJWEP 2024, 21(5), 85–93; https://doi.org/10.3233/AJW240063
Submitted: 8 April 2024 | Revised: 16 June 2024 | Accepted: 16 June 2024 | Published: 7 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this study, the distribution of chlorophyll-a for phytoplankton was monitored using Geographic Information System (GIS) techniques in selected regions of Iraq represented by the three governorates namely: Salah al-Din (Samarra (1), Baghdad (Al-Muthanna Bridge (2), Al-Utaifi (3), Al-Jadiriya(4), Kut (Al-Aziziyah (5), Al-Zubaydah (6), Al-Numaniyah (7), and Al-Muftah (8)) as human agricultural, and industrial activity rose in these locations. These stations, which are located along the Tigris River, were used as sites for collecting samples. The selection procedure was conducted on a monthly basis between February 2022 and January 2023. Chlorophyll-a measurements for phytoplankton throughout the sampling period varied from 3.7 to 2.59 g/L at stations. The two stations (Al-Utaifi and Al-Zubaydah) had similar values for both seasons, and the five stations in the dry season had values of less than 0.23 g/L. While phytoplankton numbers varied from 40.32 104 to 21.16 104cell/L for stations 3 and 5, respectively, they varied from 72.39 104 to 37.7 104cell/L for stations 6 and 8, respectively, throughout the wet season. In all of the stations and classes of phytoplankton, the amount of chlorophyll dye was approximately equal to the overall density of phytoplankton. The area under study’s predictive maps of chlorophyll-a analysis also revealed changes in the concentration of dye in all stations.

Keywords
Chlorophyll-a
GIS
phytoplankton
some regions
Tigris River
References

Abdul, I.M. (2010). Evaluation of the Environment of Hor  El-Gabayish by the adoption of environmental and life  evidence. College of Agriculture, University of Basra.

Abed, B.S., Daham, M.H. and A.H. Ismail (2021). Water  quality modelling and management of Diyala river and its  impact on Tigris River. Journal of Engineering Science  and Technology, 16(1): 122-135.

Al Ramahi, F.K.M. and Z.K.I Al Bahadl (2020). The  spatial analysis for Bassiaeriophora (Schrad.) Asch. plant  distributed in all Iraq by using RS and GIS techniques.  Baghdad Science Journal, 17(1): 126-135. http://dx.doi. org/10.21123/bsj.2020.17.1.0126

Al Ramahi, F.K.M. and Z.K.I. Al Bahadly (2022). Estimation  of Suaeda aegyptiaca plant distribution regions at Iraq  using RS and GIS applications. Iraqi Journal of Science,  58(2A):767-777. Available from: https://ijs.uobaghdad. edu.iq/index.php/eijs/article/view/6109

Al-Amiedy, E.D. and A. Al-Azawi (2022). Effect of Tharthar  canal on nutrients and chlorophyll values of Tigris River,  North Baghdad City Iraq. International Journal of Aquatic  Sciences, 12(2): 5331-5344.

Al-Ansari N. (2019). Hydro Geopolitics of the Tigris  and Euphrates. In: Recent Researches in Earth and  Environmental Sciences. Springer: Cham, 35-70. DOI:  https://doi.org/10.1007/978-3-030-18641-8_4 

Albueajee, A.I.M. (2020). Trophic Status of Auda Marsh –  Southern Iraq. PhD thesis, University of Baghdad, College  of Science for Women, Iraq.

Al-Hassany, J.S., Al-Naqeeb, N.A., Al-Rubaiee, G.H. and  F.K. Mashee (2022). Mapping of diatom indices by remote  sensing to evaluate the Um El-Naaj Marshes’ water quality.  Int. J. Aquat. Biol., 11(1): 69-75.

Al-Thahaibawi, B.M.H., Al-Mayaly, I.K.A. and S.A.K.  Al-Hiyaly (2021). Phytoplankton community within AlAuda marsh in Maysan province southern Iraq. Earth and  Environmental Science, 722(1): 012026.

Ayeni O., Ndakidemi, P., Snyman, R. and J. Odendaal (2012).  Assessment of metal concentrations, chlorophyll content  and photosynthesis in Phragmites australis along the  lower Diep River, Cape Town, South Africa. Energy and  Environment Research, 2(1): 128-139.

Bakaeva, E., Buhlool Al-Ghizzi, M.A. and A.Z. AlGhizzi (2020). Using of index biological integrity of  phytoplankton (P-IBI) in the assessment of water quality  in Don River Section. Baghdad Sci J, 18(1): 0087.

Basak, R., Wahid, K.A. and A. Dinh (2021). Estimation of  the chlorophyll-a concentration of algae species using  electrical impedance spectroscopy. Water, 13: 1223.  https://doi.org/10.3390/ w13091223.

Bhat, T.A. (2014). An analysis of demand and supply of water  in India. J Environ Earth Sci., 4(11): 67-72.

Bouaziz, M., Leidig, M. and R. Gloaguen (2011). Optimal  parameter selection for qualitative regional erosion risk  monitoring: A remote sensing study of SE Ethiopia.  Geoscience Frontiers, 2(2): 237-245.

Chang, K.T. (2006). Introduction to geographic information  system. McGraw-Hill Higher Education, Boston.

Darweesh, S.F.A. (2017). Water quality assessment of Tigris  river by diatoms community between Al-Aziziyah and Kut/ Iraq. Arab J Geosci, 13: 654

Descy, J.P. and V. Gosselain (1994). Development and  ecological importance of phytoplankton in a large lowland  river (River Meuse, Belgium). In: Phytoplankton in Turbid  Environments: Rivers and Shallow Lakes: Proceedings  of the 9th Workshop of the International Association of  Phytoplankton Taxonomy and Ecology (IAP) held in Mont  Rigi (Belgium), 10–18 July 1993 (pp. 139-155). Springer  Netherlands.

Frankovich, T.A. and J.W. Fourqurean (1997). Seagrass  epiphyte loads along a nutrient availability gradient,  Florida Bay, USA. Mar Ecol Prog Ser., 159: 37-50.

Furet, J.E. and K. Benson-Evans (1982). An evaluation of  the time required to obtain complete sedimentation of  fixed algal particles prior to enumeration. Br Phycol J.,  17(3): 253-258.

Hadi, R. (1981). Algal Studies on the River USK Ph. D.  Thesis, Univ. College, Cardiff, UK.

Hassan, F.M., Al-Kubaisi, A.A. and A.H. Talibm (2011).  Phytoplankton primary production in southern Iraq.  Baghdad Science Journal, 8(1): 519-530.

Hengl, T. (2009). A practical guide to geostatistical mapping.  2nd edition. EUR 22904 EN Scientific and Technical  Research series report. Published by Office for Official Publications of the European Communities, Luxembourg  (ISBN: 978–92–79-06904-8). 

Hurtado, P., Prieto, M., Aragón, G., de Bello, F. and I.  Martínez (2020). Intraspecific variability drives functional  changes in lichen epiphytic communities across Europe.  Ecology, 101(6): e03017. 

IMF (2012). Ecological study on epiphytic algae on aquatic  weed Myriophyllum spicatum L. in Tigris river at AlMousil province, Iraq. J Hadrmout Nat Appl Sci., 9(2) .

Ismail, A.M. (1989). Ecological and comparative study  between Baghdad Touristic Island Lake ang Tigris River  within Baghdad. 

Jabbar, S.H. and J. Al-Hassany (2018) Use of indices of  algae and water quality to assessment of Tigris river in  AL- Gheraiat area in Baghdad City, Iraq. Mesopotamia  Environmental Journal, 4(3): 25-41.

James, B.K. and L.I. Adejare (2010). Nutrients and  phytoplankton production dynamics of a tropical harbor in  relation to water quality indices. J. Am Sci., 6(9): 261-275.

Khadim, H.J. and H.O. Oleiwi (2021). Assessment of water  quality in Tigris river of AL-Kut City, Iraq by Using GIS.  In: E3S Web of Conferences, EDP Sciences 318: 4001. .

Lee, R.E. (2018). Phycology. 5th ed. Cambridge University  Press, pp. 535

Leelahakriengkrai, P. and Y. Peerapornpisal (2010). Diversity  of benthic diatoms and water quality of the Ping River,  Northern Thailand. Environ Asia, 3(1): 82-94.

Madhloom, H.M. and N. Alansari (2018). Geographical  information system and remote sensing for water resources  management case study: The Diyala River, Iraq. Int J Civil  EngTechnol, 9: 971.

Mukai, H. (2006). Contribution of benthic and epiphytic  diatoms to clam and oyster production in the Akkeshi-ko  estuary. J Oceanogr., 62(3): 267-281. Nwankwo, D.I-A.A. (1992).

Epiphyte community on water  hyacinth Eichhornia crassipes (Mart.). Solms. in coastal  waters of southwestern Nigeria. Arch Hydrobiol., 124(4): 501-511.

Paerl, H.W. and J. Huisman (2009). Climate change: A  catalyst for global expansion of harmful cyanobacterial  blooms. Environmental Microbiology Reports, 1(1): 27-37.

Obaid, M.A. (2021). Using Geographic Information Systems  (GIS) and Epiphytic Diatoms for Monitoring Water Quality  of Tigris River-Baghdad City/Iraq. A Thesis submitted to  College of Science for the University of Baghdad.

Otsuka, A.Y., Feitosa, F.A.D.N., Montes, M.D.J.F. and  A.C.D. Silva (2018). Influence of fluvial discharge on the  dynamics of Chlorophyll-α in the continental shelf adjacent  to the Recife Port Basin (Pernambuco-Brazil). Brazilian  Journal of Oceanography, 66: 91-103.

Panhalkar, S.S. and A.P. Jarag (2015). Assessment of spatial  interpolation techniques for river bathymetry generation of  Panchganga River basin using geoinformatics techniques.  Asian J Geoinform, 15: 10-15.

Prescott, G.W. (1964). The Fresh-Water Algae. William, C.  Brown Co., Publ. Dubuque, Iowa: pp. 222.

Rasheed, M.J. and F.K.M. Al-Ramahi (2021). Detection  of the impact of climate change on desertification and  sand dunes formation east of the Tigris River in Salah  Al-Din Governorate using remote sensing techniques.  Iraqi Geological Journal, 54(1A): 69-83. https://doi. org/10.46717/igj.54.1A.7Ms-2021-01-28

Sandu, C., Iacob, R. and N. Nicolescu (2003). Chlorophyll-a  determination-a reliable method for phytoplankton biomass  assessment. Acta Botanica Hungarica, 45(3-4): 389-397.

Schaum, C.E., Barton, S., Bestion, E., Buckling, A., GarciaCarreras, B. and P. Lopez et al. (2017). Adaptation of  phytoplankton to a decade of experimental warming  linked to increased photosynthesis. Nat Ecol and Amp  Evol., 1(4):1-7.

Schindler, D.W. (2006). Recent advances in the understanding  and management of eutrophication . Limnology and  Oceanography, 51(1 part2): 356-363.

Sivri, N., Seker, D.Z., Balkis, N. and A. Zan (2012). Analysis  of chlorophyll-a distribution on the south –western coast  of Istanbul during using GIS . Fresenius Environmental,  21(11): 3233.

Suma S. and R. Rajeshwari (2013). Assessment of water  quality and pollution status of Nambol River, Manipur.  International Journal of Theoretical and Applied Sciences,  5(1): 67-74.

Varol, M. and B. Şen (2018). Abiotic factors controlling  the seasonal and spatial patterns of phytoplankton  community in the Tigris River, Turkey. River Research  and Applications, 34(1): 13-23.

Vollenweider, R.A. (1969). Environmental factors linked  with primary production. A Man Methods Meas Prim  Prod Aquat Environ IBP Handb. Limnol Oceanogr., 12: 157-177.

Yaqoob, M.M., Somlyai, I., Berta, C., Bácsi, I., Al-Tayawi,  A.N., Al-Ahmady, K.K., Mohammed, R.H., Alalami, O.  and I. Grigorszky (2023). The impacts of land use and  seasonal effects on phytoplankton taxa and physicalchemical variables in the Tigris River within the city  of Mosul. Water, 15: 1062. https:// doi.org/10.3390/ w15061062.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing