AccScience Publishing / AJWEP / Volume 18 / Issue 3 / DOI: 10.3233/AJW210029
RESEARCH ARTICLE

The Effect of Environmentally Safe Nanosynthesis with Copper Particles by using Citrus aurantium Fruit Extract Against Harmful Mosquitoes

Hamdia Al-Hamdani1* Sundus Ahmed2 Rasha Hameed2 Azhar Getan3
Show Less
1 Market Research & Consumer Protection, Baghdad, Iraq
2 Department of Biology, Science College, Al-Mustansiriyah University, Baghdad, Iraq
3 Chemical Engineering, Water Treatment, Environmental & Water Directorate, Baghdad, Iraq
AJWEP 2021, 18(3), 59–67; https://doi.org/10.3233/AJW210029
Submitted: 4 May 2021 | Revised: 19 May 2021 | Accepted: 19 May 2024 | Published: 29 July 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

 The global agricultural sector suffers from the damage due to insect pests on plants all over the world, forcing farmers to indiscriminately use mineral fertilisers and chemical pesticides that are toxic and affecting the environment, plants and animals, as well as causing serious health problems to farmers and consumers. Therefore, scientists and researchers were forced to investigate and discover new methods until they explored the field of nanoscience, which shows great potential for applications in diverse fields, including agriculture, chemicals and plant protection by controlling harmful insect pests. Therefore, a biological method was used to synthesise the laboratory-prepared copper nanoparticles that were tested on both eggs and larvae phases in mosquitoes as nanocides using acidic Citrus Nargin broth (10%). A total of 1 mM aqueous CuSO4 of the plant extract was reduced and synthesised into stable copper nanoparticles with an average size of less than 450 nm. Then, the composition, size and percentage of the synthesised nanoparticles were determined using ultraviolet spectroscopy, X-ray diffraction, FTIR, SEM and AFM techniques. The results of this study showed high mortality and a significant difference (P ≤ 0.01) for mosquito eggs and larvae when exposed to the nanocide, than those found in the extract of bitter leaves and the regular copper sulfate insecticide used in agriculture against insects. The results also showed a high relative efficiency of 100% with a highly significant difference (P ≤ 0.01) after exposure of insects and their different stages to the nanocide after 72 hours. We conclude from this study the possibility of synthesising nanoparticles using mineral compounds with natural, safe and environmentally friendly bio-plant extracts as insecticides for various agricultural pests.

Keywords
CuNPs
mosquito insect
mortality
relative efficiency
Conflict of interest
The authors declare they have no competing interests.
References

Asim, U., Shahid, N., Naveed, R., Muhammad, R. and I.  Muhammad (2014). A green method for the synthesis  of copper nanoparticles using L-ascorbic acid. Revista  Matéria, 19(3): 197-203. 

Betancourt-Galindo, R., Reyes-Rodriguez, P., PuenteUrbina, B., Avila-Orta, C., Rodríguez-Fernández, O.,  Cadenas-Pliego, G., Lira-Saldivar, R. and L. García-Cerda  (2014). Synthesis of copper nanoparticles by thermal  decomposition and their antimicrobial properties. Hindawi  Publishing Corporation, Journal of Nanomaterials, 2014(980545): 1-5. 

Capinera, J.L. (2011). Cabbage Looper, Trichoplusia ni  (Hübner) (Insecta: Lepidoptera: Noctuidae). series of  Featured Creatures from the Entomology and Nematology  Department, Florida Cooperative Extension Service,  Institute of Food and Agricultural Sciences, University of  Florida. http://entomology.ifas.ufl.edu/creatures. EENY- 116: 1-6. 

Giovanni, B. (2016). Plant-mediated biosynthesis of  nanoparticles as an emerging tool against mosquitoes of  medical and veterinary importance: A review. Parasitology  Research, 115(1): 23-34. 

Kerber, N. (2008). As simple as possible, but not simpler- The  case of dehydroascorbic acid. Journal of Chemistry and  Education, 85: 1237-1242. 

Lade, B.D., Gogle, D.P. and S.B. Nandeshwar (2017). Nano  bio pesticide to constraint plant destructive pests. Journal  of Nanomedicine Research, 6(3): 2-9. 

Lida, K., Takayanagi, T., Nakanishi, T. and T. Osaka (2016).  Synthesis of Fe3O4 nanoparticles with various sizes and  magnetic properties by controlled hydrolysis, Journal of  Colloid and Interface Science, 314(1): 1-21. 

Malathi, S., Ramya, V., Ezhilarasu, T., Abiraman, T. and  S. Balasubramanian (2014). Green synthesis of novel  jasmine bud-shaped copper nanoparticles. Journal of  Nanotechnology, 2014(626523): 1-7.

Malathi, S., Ramya, V., Ezhilarasu, T., Abiraman, T. and  S.

Balasubramanian (2014). Green synthesis of novel  jasmine bud-shaped copper nanoparticles. Journal of  Nanotechnology, 2014(626523): 1-7. 

Matei, A., Cernica, I., Cadar, O., Roman, C. and V. Schiopu.  (2008). Synthesis and characterization of ZnO-polymer  nanocomposites. The International Journal of Material  Forming, 1: 767-770. 

Mohamed, T., Mohamed, E., Ayman, E., Jamaan, S., Saleh, N.,  Ahmed, A. and E. Nashwa (2020). Ecofriendly synthesis  and insecticidal application of copper nanoparticles against  the storage pest. Nanomaterials, 10(587): 2-16. 

Mohd, A.S., Shabir, H.W. and A.K. Akhtar (2016).  Nanotechnology and insecticidal formulations. Journal of  Food Bioengineering and Nanoprocessing, 1(3): 285-310.  Naresh, K.A., Kadarkarai, M., Chandrababu, R., Pari, M. and  R. Donald (2012). Green synthesis of silver nanoparticles  for the control of mosquito vectors of malaria, filariasis,  and dengue. Vector-Borne And Zoonotic Diseases, 12(3): 262-268. 

Prasad, R., Kumar, V. and K.S. Prasad (2014). Nanotechnology  in sustainable agriculture: present concerns and future  aspects. African Journal of Biotechnology, 13(6): 705-713. 

Raghunandan, D., Sarka, N., Choudhury, J., Roy, S. and A.  Bhattacharjee (2010). Analysis of vibrational spectra of  buckminster fullerene (C60) using the lie algebra. Physical  Science & Technology, 6: 60-63. 

Rai, R., Cao, J., Musfeldt, J. and D. Singh (2006).  Magnetodielectric effect in the S = 1/2 quasi-twodimensional antiferromagnet K2V3O8. (2006). Physical  Review, 73: 75112. 

Rao, K.J. and S. Paria (2013). Use of sulfur nanoparticles  as a green pesticide on Fusarium solani and Venturia  inaequalis phytopathogens. RSC (Royal Society of  Chemistry) Advances, 3(26): 10471- 10478. 

Routray, S., Dey, D., Baral, S., Das, A. and V. Patilm  (2016). Potential of nanotechnology in insect pest  control. Progressive Research – An International Journal,  11(Special-II): 903-906.

Safaepour, M., Shahverdi, A.R., Shahverdi, H.R.,  Khorramizadeh, M.R. and A.R. Gohari (2009). Green  synthesis of small silver nanoparticles using geraniol and  its cytotoxicity against Fibrosarcoma-Wehi. Avicenna  Journal of Medical Biotechnology, 1: 111-115.

Sah, A., Juyal, V. and A. Melkani (2011) Antimicrobial  activity of six different parts of the plant Citrus medica  Linn. Pharmacogn Journal, 3: 80-83. 

Saranyaadevi, K., Subha, E.R. and S. Renganathan (2014).  Synthesis and characterization of copper nanoparticle  using Capparis Zeylanicaleaf extract. International  Journal of Chemistry & Technological Research, 6(10): 4533-4541. 

Sastry, A., Aamanchi, R., Rama, L. and B. Murty (2013).  Large-scale green synthesis of Cu nanoparticles.  Environmental Chemistry Letters, 11: 183-187. 

Sekhon, B.S. (2014). Nanotechnology in agri-food production:  an overview. Nanotechnology, Science and Applications, 7: 31-53.

Shiny, K., Sundararaj, R., Mamatha, N. and B. Lingappa  (2019). A new approach to wood protection: Preliminary  study of biologically synthesized copper oxide nanoparticle  formulation as an environmental friendly wood protectant  against decay fungi and termites. Maderas. Cienciay  tecnología, 21(3): 347-356.

Sosa, I.O., Noguez, C. and R.G. Barrera (2003). Optical  properties of metal nanoparticles with arbitrary shapes.  Journal of Physics and Chemistry, B10: 6269-6275. 

Sudhir, S., Avinash, P., Aniket, G. and R. Mahendra (2014).  Green synthesis of copper nanoparticles by Citrus medica  Linn. (Idilimbu) juice and its antimicrobial activity. World  Journal of Microbial Biotechnology, DOI: 10.1007/ s11274-015-1840-3 

Vinutha, J., Deepa, B. and N. Bakthavatsalam (2013).  Nanotechnology in the management of polyphagous pest  Helicoverpa armigera. Journal of Academic Industrial  Research, 1(10): 606-608. 

Umer, A., Naveed, S. and N. Ramzan (2012). Selection  of a suitable method for the synthesis of Copper  nanoparticles. NANO: Brief Reports and Reviews, World  Scientist Publishing Company, 7(05), DOI: 10.1142/ S1793292012300058. 

Usman, M., Ibrahim, N., Shameli, K., Zainuddin, N. and W.  Yunus (2012). Copper nanoparticles mediated by chitosan:  synthesis and characterization via chemical methods.  Molecules, 17: 14928-14936.

Zhang, Z., Yang, B., Ding, X., Lan, Y. and X. Guo (2010). Preparation of copper nanoparticles by chemical reduction  method using potassium borohydride. Transactions of  Nonferrous Metals Society of China, 20(240).

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing