AccScience Publishing / AJWEP / Volume 18 / Issue 3 / DOI: 10.3233/AJW210028
RESEARCH ARTICLE

Trophic Status of Lake Phewa and Kulekhani Reservoir, Nepal

Smriti Gurung1* Babi Kumar Kafle2 Bed Mani Dahal1 Milina Sthapit3 Nani Raut1 Chhatra Mani Sharma3 Kumud Raj Kafle1 Sushma Manandhar1
Show Less
1 Department of Environmental Science and Engineering, Kathmandu University, P.O Box 6250, Nepal
2 Department of Chemical Science and Engineering, Kathmandu University, P.O Box 6250, Nepal
3 Central Department of Environmental Science, Tribhuvan University, Nepal
AJWEP 2021, 18(3), 49–57; https://doi.org/10.3233/AJW210028
Submitted: 30 October 2020 | Revised: 25 January 2021 | Accepted: 25 January 2021 | Published: 29 July 2021
© 2021 by the Autohr(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Eutrophication is one of the growing environmental concerns and is affecting and compromising freshwater bodies across the world making the trophic status assessment of water bodies crucial for their restoration and sustainable use. This paper describes the trophic status of Lake Phewa and Kulekhani Reservoir from Nepal. Sampling was conducted during October 2017 (post-monsoon), April 2018 (Pre-monsoon), July 2018 (Monsoon) and February 2019 (Winter). Trophic State Index (TSI) as given by Carlson (1977) and Trophic State Index Deviation given by Carlson (1991) were estimated to assess trophic status and deviations between the Trophic State Indices. One-way analysis of variance showed significant seasonal variation (p < 0.05) in Secchi depth, total phosphorus (TP), TSI in both the water bodies. Both the water bodies were classified as eutrophic during pre-monsoon and post-monsoon, and hypereutrophic during the monsoon indicating the increased flow of allochthonous inputs from their respective catchments. Non-algal turbidity was found to be the limiting factor for productivity. There is a need for sustainable watershed management in order to reduce the nutrients runoff and accumulation in the water bodies.

Keywords
Chlorophyll a
eutrophication
Kulekhani Reservoir
Lake Phewa monsoon
nutrient
References

An, K.G. and S.S. Park (2002). Indirect influence of the  summer monsoon on chlorophyll–total phosphorus models  in reservoirs: A case study. Ecological Modelling, 152: 191-203.

APHA (2012).Standard methods for the Examination of Water  and Wastewater, 22nd Edition. E. W. Rice, R. B. Baird, A.  D. Eaton and L. S. Clesceri (Eds.) American Public Health  Association (APHA), American Water Works Association  (AWWA) and Water Environment Federation (WEF),  Washington, D.C., USA.

Carlson, R.E. (1977). A trophic state index for lakes.  Limnology and Oceanography, 22(2): 361-369.

Carlson, R.E. (1991). Expanding the trophic state concept to  identify non-nutrient limited lakes and reservoirs. In: L,  Carpenter (ed.), Proceedings of a National Conference on  Enhancing the States’ Lake Management Programs. North  American Lake Management Society, Chicago, 166 p.

Carlson, R.E. and J. Simpson (1996). A Coordinator’s Guide  to Volunteer Lake Monitoring Methods. North American  Lake Management Society, 96p. Dodds, W.K. (2007). Trophic state, eutrophication and  nutrient criteria in streams. Trends in Ecology & Evolution,  22(12): 669-676.

Dzialowski, A.R., Smith, V.H., Wang, S.H., Martin, M.C. and  F. Jr. deNoyelles (2011). Effects of non-algal turbidity on  cyanobacterial biomass in seven turbid Kansas reservoirs. Lake and Reservoir Management, 27(1): 6-14.

Fink, G., Alcamo, J., Flörke, M. and K. Reder (2018).  Phosphorus loadings to the world’s largest lakes: Sources  and trends. Global Biogeochemical Cycles, 32(4): 617- 634.

Ghimire, N.P., Jha, P.K. and G. Caravello (2013). Physicochemical parameters of high altitude rivers in the  Sagarmatha (Everest) National Park, Nepal. Journal of  Water Resource Protection, 5: 761-767.

González, E.J. and G. Roldán (2019). Eutrophication and  phytoplankton: some generalities from lakes and reservoirs  of the Americas. In: M. Vítová (ed.). Microalgae from  Physiology to Adaptation. IntechOpen, http://dx.doi. org/10.5772/intechopen.89010.

Gurung, S., Gurung, A., Sharma, C. M., Jüttner, I., Tripathee,  L., Bajracharya, R.M., Raut, N., Pradhananga, P.,  Sitaula, B.K., Zhang, Y., Kang, S. and J. Guo (2018).  Hydrochemistry of Lake Rara: A high mountain lake in  western Nepal. Lakes & Reservoirs: Science, Policy and  Management for Sustainable Use, 23(2): 87-97.

Gurung, S., Tripathee, L., Wang, X., Paudyal, R., Bhatta, R.  and Sharma, C.M. (2019). Nutrients and organic carbons  in lake waters of the Third Pole. In: C.M. Sharma, S.  Kang, L. Tripathee (Eds.) Water Quality in the Third Pole.  Elsevier, 312p.

Gurung, T.B., Mulmi, R.M., Kalyan, K.C., Wagle, G.,  Pradhan, G.B., Upadhayaya, K. and A.K. Rai (2009).  Cage fish culture: An alternative livelihood option for  communities displaced by reservoir impoundment in  Kulekhani, Nepal. In: S.S. De Silva, B.F. Davy (Eds). Success Stories in Asian Aquaculture. Springer Dordrecht  Heidelberg London New York, 214 p.

Hou, D., He, J., Lü, C., Sun, Y., Zhang, F. and K.  Otgonbayar (2013). Effects of environmental factors  on nutrients release at sediment-water interface and  assessment of trophic status for a typical shallow lake,  Northwest China. The Scientific World Journal, 716342. doi:10.1155/2013/716342

Hwang, S.J., Kwun, S.K. and C.G. Yoon (2003).Water  quality and limnology of Korean reservoirs. Paddy Water  Environment, 1: 43-52.

Jain, A., Rai, S.C., Pal, J. and E. Sharma (1999). Hydrology  and nutrient dynamics of a sacred lake in Sikkim  Himalaya. Hydrobiologia, 416: 13-22.

Jones, R.J., Knowlton, M.F. and K.G. An (2003). Trophic  state, seasonal patterns and empirical models in south  Korean reservoirs. Lakes and Reservoir Management,  19(1): 64-78. 

Jung, S., Shin, M., Kim, J., Eum, J., Lee, Y., Lee, J., Choi,  Y., You, K., Owen, J. and B. Kim (2016). The effects of  Asian summer monsoons on algal blooms in reservoirs.  Inland Waters, 6: 406-413.

Karmakar, S. and O.M. Musthafa (2013). Lakes and  reservoirs: Pollution. In: Encyclopedia of Environmental  Management. Taylor and Francis: New York, doi:10.1081/ E-EEM-120047215.

Kasprzak, P., Padisák, J., Koschel, R., Krienitz, L. and F.  Gervais (2008). Chlorophyll a concentration across a  trophic gradient of lakes: An estimator of phytoplankton  biomass? Limnologica, 38: 327-338.

Khan, M.N. and F. Mohammad (2014). Eutrophication:  Challenges and solutions. In: A. Ansari and S. Gill  (Eds.), Eutrophication: Causes, consequences and control.  Dordrecht, Springer, 261 p.

Laspidou, C., Kofinas, D., Mellios, N., Latinopoulos, D. and  T. Papadimitriou (2017). Investigation of factors affecting  the trophic state of a shallow Mediterranean reconstructed  lake. Ecological Engineering, 103: 154-163.

Lee, H.W., Lee, Y.S., Kim, J., Lim, K.J. and J.H. Choi (2019). Contribution of internal nutrients loading on the water  quality of a reservoir.Water, 11(7): 1409. (doi:10.3390/ w11071409).

Lenard, T., Ejankowski, W. and M. Poniewozik (2019).  Responses of phytoplankton communities in selected  eutrophic lakes to variable weather conditions. Water,  11(6): 1207. doi:10.3390/w11061207

Liu, W., Zhang, Q. and G. Liu (2011). Effects of watershed  land use and lake morphometry on the trophic state of  Chinese lakes: Implications for eutrophication control.  Clean-Soil, Air, Water, 39(1): 35-42.

Lorenzen, C.J. (1967). Determination of chlorophyll and  pheopigments: Spectrophotometric equations. Limnology  and Oceanography, 12: 343-346.

Mamun, Md. and K.G. An (2017). Major nutrients and  chlorophyll dynamics in Korean agricultural reservoirs  along with an analysis of trophic state index deviation.  Journal of Asia- Pacific Biodiversity, 10: 183-191.

MEA (2005). Millennium Ecosystem Assessment. Ecosystems  and human well-being: Wetlands and Water synthesis.  World Resource Institute, Washington, DC, 68 p. MoFE (2018). National Ramsar Strategy and Action Plan,  Nepal (2018-2024).

Ministry of Forests and Environment,  Singha Durbar, Kathmandu, Nepal. Nakanishi, M., Watanabe, M.M., Terashima, A., Sako, Y.,  Konda, T., Shrestha, K., Bhandary, H. R. and Y. Ishida  (1988). Studies on some limnological variables in subtropical lakes of Pokhara Valley, Nepal. Japanese Journal  of Limnology, 49: 71-86.

Nayek, S., Gupta, S. and K.K. Pobi (2018). Physicochemical  characteristics and trophic state evaluation of post glacial  mountain lake using multivariate analysis. Global Journal  of Environmental Science and Management, 4(4): 451-464.

Priskin, J. (2008). Implications of eutrophication for lake  tourism in Québec.Téoros, 27(2): 59-61. 

Quevedo-Castro, A., Bandala, E.R., Rangel-Peraza, J.G.,  Amábilis-Sosa, L.E., Sanhouse-García, A. and Y.A.  Bustos-Terrones (2019).Temporal and spatial study  of water quality and trophic evaluation of a large  tropical Reservoir. Environments, 6(6): 61. doi:10.3390/ environments6060061

Rai, A.K. (1998). Trophic status of Fewa, Begnas and Rupa  Lakes in Pokhara Valley, Nepal: Past, present and future.  Journal of Lake Sciences, 10: 181-201.

Rai, A.K. (2000). Limnological characteristics of subtropical  Lakes Phewa, Begnas and Rupa in Pokhara Valley, Nepal.  Limnology, 1: 33-46.

Rai, A.K., Shrestha, B.C., Joshi, P.L., Gurung, T.B. and M.  Nakanishi (1995). Bathymetric maps of Lakes Phewa,  Begnas and Rupa in Pokhara Valley, Nepal. Memoirs of  the Faculty of Science, Kyoto University, Series of Biology,  16: 49-54.

Sahoo, P.K., Guimarães. J.T.F., Souza-Filho, P.W.M., Da  Silva, M.S., Da Silva Junior, R.O., Pessim, G., De Moraes,  B.C., Pessoa, P.F.P., Rodrigues, T.M., Da Costa, M.F. and  R. Dall’agno (2016). Influence of seasonal variation on  the hydro-biogeochemical characteristics of two upland  lakes in the Southeastern Amazon, Brazil. Annals of the  Brazilian Academy of Sciences, 88(4): 2211-2227.

Sanseverino, I., Conduto, D., Pozzoli, L., Dobricic, S. and  T. Lettieri (2016). Algal bloom and its economic impact,  EUR 27905 EN,doi:10.2788/660478

Shah, J.A., Pandit, A.K. and M. Shah (2014). Spatial and  temporal variations of nitrogen and phosphorus in Wular  Lake leading to eutrophication. Ecologia, 4(2): 44-55.

Shrestha, S., Khatiwada, M., Babel, M.S. and K. Parajuli  (2014). Impact of climate change on river flow and  hydropower production in Kulekhani Hydropower Project  of Nepal. Environmental Processes, 1: 231-250.

Silvano, R.F. and F.A.R. Barbosa (2015). Eutrophication  potential of lakes: An integrated analysis of trophic state,  morphometry, land occupation, and land use. Brazilian  Journal of Biology, 75(3): 607-615.

Smith, V.H. and D.W. Schindler (2009). Eutrophication  science: Where do we go from here? Trends in Ecology  & Evolution, 24(4): 201-207.

Soranno, P.A., Cheruvelil, K.S., Wagner, T., Webster, K.E. and  M.T. Bremiga (2015). Effects of land use on lake nutrients:  The importance of scale, hydrologic connectivity, and  region. PLOS ONE, doi:10.1371/journal.pone.0135454 

Stephens, D.L.B., Carlson, R.E., Horsbrgh, C.A., Hoyer, M.V.  Bachmann, R.W. and Jr., D.E. Canfield (2015).Regional  distribution of Secchi disk transparency in waters of the  United States. Lake and Reservoir Management, 31(1):  55-63.  Sthapit, K.M. (1995).

Sedimentation of lakes and reservoirs  with special reference to the Kulekhani reservoir. In:  Workshop Proceedings: Schreier H, Shah PB, Brown  S (eds), Challenges in resource dynamics in Nepal:  Processes, trends and dynamics in Middle Mountain  watersheds,. International Centre for Integrated Mountain  Development (ICIMOD) and IDRC, Kathmandu, Nepal.  pp. 5-12.

Tartari, G.A., Tartari, G. and R. Mosello (1998).Water  chemistry of high altitude lakes in Khumbu and Imja  Kola valleys (Nepalese Himalayas). Memorie dell’Istituto  Italiano Idrobiologia, 57: 51-76.

Watson, C.S., Kargel, J.S., Regmi, D., Rupper, S., Maurer,  J.M. and A. Karki (2019). Shrinkage of Nepal’s second  largest lake (Phewa Tal) due to watershed degradation and  increased sediment influx. Remote Sensing, 11(4). https:// doi10.3390/rs11040444 Accessed on 9 August 2020.

Wetzel, R.G. (2001). Limnology: Lake and River Ecosystems,  3rd Edition London, UK: Academic Press, 1006 p. 

Yadav, A. and J. Pandey (2017). Contribution of point  sources and non-point sources to nutrient and carbon loads  and their influence on the trophic status of the Ganga  River at Varanasi, India. Environmental Monitoring and  Assessment, 189(9): 475. doi:10.1007/s10661-017-6188-8

Zheng, T., Cao, H., Xu, J., Yan, Y., Lin, X. and J. Huang  (2019). Characteristics of atmospheric deposition during  the period of algal bloom formation in urban water bodies. Sustainability, 11: 1703. doi:10.3390/su1106170

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing