AccScience Publishing / AJWEP / Volume 18 / Issue 3 / DOI: 10.3233/AJW210030
RESEARCH ARTICLE

Electro-oxidative Decolouration and Degradation of  Amaranth Dye Wastewater in Batch Setup using Novel Ti/TiO2-Ru2O-IrO2 Anode

Prathamesh M. Khatu1 Harshika Suman1 Vikas Kumar Sangal1* Manish Vashishtha1 Tarun Chaturvedi1
Show Less
1 Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur – 302017, India
AJWEP 2021, 18(3), 69–77; https://doi.org/10.3233/AJW210030
Submitted: 1 June 2021 | Revised: 22 June 2021 | Accepted: 22 June 2021 | Published: 29 July 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

 In this work, electro-oxidation of amaranth dye wastewater has been performed using dimensionally stable anode (DSA) and stainless-steel cathode. Ti/TiO2-Ru2O-IrO2 ternary electrode was used as the anode. Effect of various parameters such as current density, pH, voltage and time on the degradation and decolouration of dye was studied. Optimum conditions for the treatment of dye wastewater in batch setup were found. The complete decolouration was achieved in the first 5 min of the process. Decolouration and degradation of amaranth dye wastewater followed pseudo-first-order kinetics. The present research work unlocks the new horizon towards the degradation of dye wastewater employing the once through continuous process.

Keywords
Amaranth
decolouration
degradation
batch setup
dimensionally stable anode (DSA)
Ti/TiO2-Ru2O-IrO2
Conflict of interest
The authors declare they have no competing interests.
References

Allen, S.J., Khader, K.Y. and M. Bino (1995). Electrooxidation  of dyestuffs in waste waters. Journal of Chemical  Technology & Biotechnology: International Research in  Process, Environmental and Clean Technology, 62(2): 111-117.

Anglada, A., Urtiaga, A. and I. Ortiz (2009). Contributions  of electrochemical oxidation to waste-water treatment:  Fundamentals and review of applications. Journal of  Chemical Technology & Biotechnology, 84(12): 1747- 1755.

 Bantle, J.A., Fort, D.J., Rayburn, J.R., Deyoung, D.J. and S.J.  Bush . (1990). Further validation of FETAX: Evaluation  of the developmental toxicity of five known mammalian  teratogens and non-teratogens. Drug and Chemical  Toxicology, 13(4): 267-282.

Barros, W.R., Franco, P.C., Steter, J.R., Rocha, R.S. and M.R.  Lanza (2014a). Electro-Fenton degradation of the food dye  amaranth using a gas diffusion electrode modified with  cobalt (II) phthalocyanine. Journal of Electroanalytical  Chemistry, 722: 46-53.

Barros, W.R., Steter, J.R., Lanza, M.R. and A.J. Motheo  (2014b). Degradation of amaranth dye in alkaline  medium by ultrasonic cavitation coupled with  electrochemical oxidation using a boron-doped diamond  anode. Electrochimica Acta, 143: 180-187.

Borràs, N., Arias, C., Oliver, R. and E. Brillas (2011).  Mineralization of desmetryne by electrochemical advanced  oxidation processes using a boron-doped diamond anode  and an oxygen-diffusion cathode. Chemosphere, 85(7): 1167-1175.

Borràs, N., Oliver, R., Arias, C. and E. Brillas (2010).  Degradation of atrazine by electrochemical advanced  oxidation processes using a boron-doped diamond  anode. The Journal of Physical Chemistry A, 114(24):  6613-6621.

Boye, B., Brillas, E., Marselli, B., Michaud, P.A., Comninellis,  C., Farnia, G. and G. Sandonà (2006). Electrochemical  incineration of chloromethylphenoxy herbicides in acid  medium by anodic oxidation with boron-doped diamond  electrode. Electrochimica Acta, 51(14): 2872-2880.

Brillas, E. and C.A. Martínez-Huitle (2015). Decontamination  of wastewaters containing synthetic organic dyes by  electrochemical methods. An updated review. Applied  Catalysis B: Environmental, 166: 603-643.

Centi, G., Grande, A. and S. Perathoner (2002). Catalytic  conversion of MTBE to biodegradable chemicals in  contaminated water. Catalysis Today, 75(1-4): 69-76.

Cripps, C., Bumpus, J.A. and S.D. Aust (1990).  Biodegradation of azo and heterocyclic dyes by  Phanerochaete chrysosporium. Applied and environmental  microbiology, 56(4): 1114-1118.

Daneshvar, N., Aber, S., Vatanpour, V. and M.H. Rasoulifard  (2008). Electro-Fenton treatment of dye solution containing  Orange II: Influence of operational parameters. Journal of  Electroanalytical Chemistry, 615(2): 165-174.

Dbira, S., Bensalah, N. and A. Bedoui (2016). Mechanism  and kinetics of electrochemical degradation of uric  acid using conductive-diamond anodes. Environmental  Technology, 37(23): 2993-3001.

Drake, J.P. (1975). Food colours—harmless aesthetics or  epicurean luxuries? Toxicology, 5(1): 3-42.

Elaissaoui, I., Akrout, H., Grassini, S., Fulginiti, D. and I.  Bousselmi (2019). Effect of coating method on the structure  and properties of a novel PbO2 anode for electrochemical  oxidation of Amaranth dye. Chemosphere, 217: 26-34.

Fajardo, A.S., Martins, R.C., Silva, D.R., Quinta-Ferreira,  R.M. and C.A. Martinez-Huitle (2017). Electrochemical  abatement of amaranth dye solutions using individual or  an assembling of flow cells with Ti/Pt and Ti/Pt-SnSb  anodes. Separation and Purification Technology, 179: 194-203.

Filali-Meknassi, Y., Tyagi, R.D., Surampalli, R.Y., Barata, C.  and M.C. Riva (2004). Endocrine-disrupting compounds  in wastewater, sludge-treatment processes, and receiving  waters: Overview. Practice Periodical of Hazardous,  Toxic, and Radioactive Waste Management, 8(1): 39-56

Gupta, V.K., Jain, R., Mittal, A., Saleh, T.A., Nayak, A.,  Agarwal, S. and S. Sikarwar (2012). Photo-catalytic  degradation of toxic dye amaranth on TiO2/UV in aqueous  suspensions. Materials Science and Engineering: C, 32(1):  12-17.

Hattori, S., Doi, M., Takahashi, E., Kurosu, T., Nara,  M., Nakamatsu, S. and M. Iida (2003). Electrolytic  decomposition of amaranth dyestuff using diamond  electrodes. Journal of Applied Electrochemistry, 33(1):  85-91.

Huang, K.C., Couttenye, R.A. and G.E. Hoag (2002). Kinetics  of heat-assisted persulfate oxidation of methyl tert-butyl  ether (MTBE). Chemosphere, 49(4): 413-420.

Kaur, P., Kushwaha, J.P. and V.K. Sangal (2017). Evaluation  and disposability study of actual textile wastewater  treatment by electro-oxidation method using Ti/RuO2 anode. Process Safety and Environmental Protection, 111: 13-22.

Kaur, P., Sangal, V.K. and J.P. Kushwaha (2015). Modeling  and evaluation of electro-oxidation of dye wastewater  using artificial neural networks. RSC Advances, 5(44): 34663-34671.

Koutsogeorgopoulou, L., Maravelias, C., Methenitou, G.  and A. Koutselinis (1998). Immunological aspects of the  common food colorants, amaranth and tartrazine. Veterinary  and Human Toxicology, 40(1): 1-4.

Kumar, A., Prasad, B. and I.M. Mishra (2007). Process  parametric study for ethene carboxylic acid removal  onto powder activated carbon using Box-Behnken  design. Chemical Engineering & Technology: Industrial  Chemistry-Plant Equipment-Process EngineeringBiotechnology, 30(7): 932-937.

Lanza, M.R. and R. Bertazzoli (2002). Cyanide oxidation from  wastewater in a flow electrochemical reactor. Industrial &  Engineering Chemistry Research, 41(1): 22-26.

Lau, K., McLean, W.G., Williams, D.P. and C.V. Howard  (2006). Synergistic interactions between commonly  used food additives in a developmental neurotoxicity  test. Toxicological Sciences, 90(1): 178-187.

Lockey, S.D. (1959). Allergic reactions due to FD and C  Yellow No. 5, tartrazine, an aniline dye used as a coloring  and identifying agent in various steroids. Annals of  Allergy, 17: 719-721.  

Martínez-Huitle, C.A. and L.S. Andrade (2011).  Electrocatalysis in wastewater treatment: Recent  mechanism advances. Quimica Nova, 34(5): 850-858.

Martínez-Huitle, C.A. and E. Brillas (2009). Decontamination  of wastewaters containing synthetic organic dyes byelectrochemical methods: A general review. Applied  Catalysis B: Environmental, 87(3-4): 105-145.

National Research Council (1992). Biologic Markers in  Immunotoxicology. National Academies Press.

Neto, S.A. and A.R. De Andrade (2009). Electrochemical  degradation of glyphosate formulations at DSA® anodes  in chloride medium: An AOX formation study. Journal of  Applied Electrochemistry, 39(10): 1863.

Oturan, M.A. and J.J. Aaron (2014). Advanced oxidation  processes in water/wastewater treatment: principles and  applications. A review. Critical Reviews in Environmental  Science and Technology, 44(23): 2577-2641.

Rajkumar, D. and J.G. Kim (2006). Oxidation of various  reactive dyes with in situ electro-generated active chlorine  for textile dyeing industry wastewater treatment. Journal  of Hazardous Materials, 136(2): 203-212.

Sahu, O.P. and P.K. Chaudhari (2015). Electrochemical  treatment of sugar industry wastewater: COD and color  removal. Journal of Electroanalytical Chemistry, 739: 122-129.

Salazar-Gastélum, M.I., Reynoso-Soto, E.A., Lin, S.W.,  Perez-Sicairos, S. and R.M. Félix-Navarro (2013).  Electrochemical and photoelectrochemical decoloration  of amaranth dye azo using composited dimensional  stable anodes. Journal of Environmental Protection, 4(1):  27339- 27347.

Singla, J., Verma, A. and V.K. Sangal (2017). Performance  and evaluation of electro-oxidation treatment of  human urine metabolite uric acid using response  surface methodology. Journal of The Electrochemical  Society, 164(12): E312-E320.

Singla, J., Verma, A. and V.K. Sangal (2018). Parametric  optimization for the treatment of human urine  metabolite, creatinine using electro-oxidation. Journal of  Electroanalytical Chemistry, 809: 136-146.

Song, Y., Wei, G. and R. Xiong (2007). Structure and properties  of PbO2–CeO2 anodes on stainless steel. Electrochimica  Acta, 52(24): 7022-7027.

Steter, J.R., Barros, W.R., Lanza, M.R. and A.J. Motheo  (2014). Electrochemical and sonoelectrochemical processes  applied to amaranth dye degradation. Chemosphere, 117:  200-207.

Wu, W., Huang, Z.H. and T.T. Lim (2014). Recent development  of mixed metal oxide anodes for electrochemical oxidation  of organic pollutants in water. Applied Catalysis A:  General, 480: 58-78.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing