Applications of artificial intelligence in acute stroke imaging

Stroke remains a major global public health challenge, representing the second leading cause of death worldwide and a primary contributor to long-term disability. The paradigm “time is brain” underscores the importance of treating stroke patients within the critical window period, ideally within 60 min from symptom onset, to minimize damage and improve outcomes. The integration of artificial intelligence (AI) into stroke imaging has transformed diagnosis and management by increasing speed, accuracy, and efficiency. AI algorithms have been trained to detect acute stroke, assess hemorrhage, detect and quantify midline shifts, calculate automated Alberta Stroke Program Early Computed Tomography Scores, and identify dense middle cerebral artery on non-contrast computed tomography (CT) as well as large vessel occlusions on CT angiograms, with high sensitivity and specificity. AI also aids in treatment guidance and outcome monitoring. This review provides insights into AI applications in acute stroke imaging, including its role in early detection, screening, triage and prioritization, automated image analysis, workflow optimization, and system integration. Despite its benefits, AI adoption faces challenges such as clinical validation, ethical considerations, and integration into existing workflows. Future developments depend on large, diverse, and well-annotated datasets to train more robust AI systems capable of guiding treatment strategies and improving patient outcomes. The seamless integration of cloud-based AI solutions with telereporting platforms has the potential to revolutionize stroke care by enabling rapid, high-quality radiologic interpretation, even in remote locations.
- Soun JE, Chow DS, Nagamine M, et al. Artificial intelligence and acute stroke imaging. AJNR Am J Neuroradiol. 2021;42(1):2-11. doi: 10.3174/ajnr.A6883
- Behera DK, Rahut DB, Mishra S. Analyzing stroke burden and risk factors in India using data from the Global Burden of Disease Study. Sci Rep. 2024;14(1):22640. doi: 10.1038/s41598-024-72551-4
- Cheng Y, Lin Y, Shi H, et al. Projections of the stroke burden at the global, regional, and national levels up to 2050 based on the global burden of disease study 2021. JAHA. 2024;13:e036142. doi: 10.1161/JAHA.124.036142
- Pandian JD, Padma Srivastava MV, Aaron S, et al. The burden, risk factors and unique etiologies of stroke in South- East Asia Region (SEAR). he Lancet Reg Health Southeast Asia. 2023;17:100290. doi: 10.1016/j.lansea.2023.100290
- Jones SP, Baqai K, Clegg A, et al. Stroke in India: A systematic review of the incidence, prevalence, and case fatality. Int J Stroke. 2022;17(2):132-140. doi: 10.1177/17474930211027834
- Rangamani S, Huliyappa D, Kulothungan V, et al. Stroke incidence, mortality, subtypes in rural and urban populations in five geographic areas of India (2018–2019): results from the National Stroke Registry Programme. Lancet Reg Health Southeast Asia. 2024;23:100308. doi: 10.1016/j.lansea.2023.100308
- Tripathi M, Vibha D. Stroke in young in India. Stroke Res Treat. 2010;2011:368629. doi: 10.4061/2011/368629
- Kalyanpur A, Mathur N. A Teleradiology system for early ischemic and hemorrhagic stroke evaluation and management. J Clin Interv Radiol ISVIR. 2023;7(3):183-189. doi: 10.1055/s-0043-1771379
- Maier O, Menze BH, Von Der Gablentz J, et al. ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal. 2017;35:250-269. doi: 10.1016/j.media.2016.07.009
- Johnston KC, Worrall BB. Teleradiology assessment of computerized tomographs online reliability study (TRACTORS) for acute stroke evaluation. Telemed J e-Health. 2003;9(3):227-233. doi: 10.1089/153056203322502605
- Krupinski E. Teleradiology: Current perspectives. RMI. 2014;7:5-14. doi: 10.2147/RMI.S48140
- Bogner P, Chadaide Z, Lenzsér G, et al. Teleradiology-based stroke network in Western and Southern Transdanubia in Hungary. Orv Hetil. 2021;162(17):668-675. doi: 10.1556/650.2021.32097
- Kalyanpur A, Mathur N. Integration of teleradiology and artificial intelligence: Opportunities and challenges. MRAJ. 2024;12(10):1-8. doi: 10.18103/mra.v12i10.5904
- Nukovic JJ, Opancina V, Ciceri E, et al. Neuroimaging modalities used for ischemic stroke diagnosis and monitoring. Medicina (Kaunas). 2023;59(11):1908. doi: 10.3390/medicina59111908
- Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. In: Artificial Intelligence in Healthcare. Netherlands: Elsevier; 2020. p. 25-60. doi: 10.1016/B978-0-12-818438-7.00002-2
- Hassan AE, Ringheanu VM, Preston L, Tekle WG. Artificial intelligence-parallel stroke workflow tool improves reperfusion rates and door-in to puncture interval. SVIN. 2022;2(5):e000224. doi: 10.1161/SVIN.121.000224
- Tison GH, Sanchez JM, Ballinger B, et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol. 2018;3(5):409. doi: 10.1001/jamacardio.2018.0136
- Liu Y, Wen Z, Wang Y, et al. Artificial intelligence in ischemic stroke images: Current applications and future directions. Front Neurol. 2024;15:1418060. doi: 10.3389/fneur.2024.1418060
- Al-Janabi OM, El Refaei A, Elgazzar T, et al. Current stroke solutions using artificial intelligence: A review of the literature. Brain Sci. 2024;14(12):1182. doi: 10.3390/brainsci14121182
- El Naamani K, Musmar B, Gupta N, et al. The Artificial intelligence revolution in stroke care: A decade of scientific evidence in review. World Neurosurg. 2024;184:15-22. doi: 10.1016/j.wneu.2024.01.012
- Shafaat O, Bernstock JD, Shafaat A, et al. Leveraging artificial intelligence in ischemic stroke imaging. J Neuroradiol. 2022;49(4):343-351. doi: 10.1016/j.neurad.2021.05.001
- Mouridsen K, Thurner P, Zaharchuk G. Artificial intelligence applications in stroke. Stroke. 2020;51(8):2573-2579. doi: 10.1161/STROKEAHA.119.027479
- Yedavalli VS, Tong E, Martin D, Yeom KW, Forkert ND. Artificial intelligence in stroke imaging: Current and future perspectives. Clin Imaging. 2021;69:246-254. doi: 10.1016/j.clinimag.2020.09.005
- Pinto-Coelho L. How Artificial intelligence is shaping medical imaging technology: A survey of innovations and applications. Bioengineering (Basel). 2023;10(12):1435. doi: 10.3390/bioengineering10121435
- Kordzadeh A, Askari A, Abbassi OA, Sanoudos N, Mohaghegh V, Shirvani H. Artificial intelligence and duplex ultrasound for detection of carotid artery disease. Vascular. 2023;31(6):1187-1193. doi: 10.1177/17085381221107465
- Skandha SS, Gupta SK, Saba L, et al. 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: AtheromaticTM 2.0. Comput Biol Med. 2020;125:103958. doi: 10.1016/j.compbiomed.2020.103958
- Miceli G, Rizzo G, Basso MG, et al. Artificial intelligence in symptomatic carotid plaque detection: A narrative review. Appl Sci. 2023;13(7):4321. doi: 10.3390/app13074321
- Rava RA, Seymour SE, LaQue ME, et al. Assessment of an artificial intelligence algorithm for detection of intracranial hemorrhage. World Neurosurg. 2021;150:e209-e217. doi: 10.1016/j.wneu.2021.02.134
- Chilamkurthy S, Ghosh R, Tanamala S, et al. Development and Validation of Deep Learning Algorithms for Detection of Critical Findings in Head CT Scans. [arxiv preprint]; 2018. doi: 10.48550/ARXIV.1803.05854
- Agarwal S, Wood D, Grzeda M, et al. Systematic review of artificial intelligence for abnormality detection in high-volume neuroimaging and subgroup meta-analysis for intracranial hemorrhage detection. Clin Neuroradiol. 2023;33(4):943-956. doi: 10.1007/s00062-023-01291-1
- Chiramal JA, Johnson J, Webster J, et al. Artificial Intelligence-based automated CT brain interpretation to accelerate treatment for acute stroke in rural India: An interrupted time series study. PLOS Glob Public Health. 2024;4(7):e0003351. doi: 10.1371/journal.pgph.0003351
- Gilotra K, Swarna S, Mani R, Basem J, Dashti R. Role of artificial intelligence and machine learning in the diagnosis of cerebrovascular disease. Front Hum Neurosci. 2023;17:1254417. doi: 10.3389/fnhum.2023.1254417
- Hillis JM, Bizzo BC, Newbury-Chaet I, et al. Evaluation of an artificial intelligence model for identification of intracranial hemorrhage subtypes on computed tomography of the head. SVIN. 2024;4(4):e001223. doi: 10.1161/SVIN.123.001223
- Zhao Z, Zhang Y, Su J, et al. A comprehensive review for artificial intelligence on neuroimaging in rehabilitation of ischemic stroke. Front Neurol. 2024;15:1367854. doi: 10.3389/fneur.2024.1367854
- Savage CH, Tanwar M, Elkassem AA, et al. Prospective evaluation of artificial intelligence triage of intracranial hemorrhage on noncontrast head CT examinations. Am J Roentgenol. 2024;223(5):e2431639. doi: 10.2214/AJR.24.31639
- Vacek A, Mair G, White P, et al. Evaluating artificial intelligence software for delineating hemorrhage extent on CT brain imaging in stroke. J Stroke Cerebrovasc Dis. 2024;33(1):107512. doi: 10.1016/j.jstrokecerebrovasdis.2023.107512
- Agrawal D, Joshi S, Poonamallee L. Automated midline shift detection and quantification in traumatic brain injury: A comprehensive review. Indian J Neurotrauma. 2024;21(1):6–12.doi: 10.1055/s-0043-1777676
- Liao CC, Chen YF, Xiao F. Brain midline shift measurement and its automation: A review of techniques and algorithms. Int J Biomed Imaging. 2018;2018:4303161. doi: 10.1155/2018/4303161
- Nguyen NP, Yoo Y, Chekkoury A, et al. Brain Midline Shift Detection and Quantification by a Cascaded Deep Network Pipeline on Non-contrast Computed Tomography Scans. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). United States: IEEE; 2021. p. 487-495. doi: 10.1109/ICCVW54120.2021.00059
- Chen W, Belle A, Cockrell C, Ward KR, Najarian K. Automated midline shift and intracranial pressure estimation based on brain CT images. JoVE. 2013;74:3871. doi: 10.3791/3871
- Yan JL, Chen YL, Chen MY, et al. A Robust, fully automatic detection method and calculation technique of midline shift in intracranial hemorrhage and its clinical application. Diagnostics. 2022;12(3):693. doi: 10.3390/diagnostics12030693
- Pexman JH, Barber PA, Hill MD, et al. Use of the alberta stroke program early CT score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001;22(8):1534-1542.
- Chiang PL, Lin SY, Chen MH, et al. Deep learning-based automatic detection of ASPECTS in acute ischemic stroke: Improving stroke assessment on CT scans. J Clin Med. 2022;11(17):5159. doi: 10.3390/jcm11175159
- Upadhyay U, Ranjan M, Golla S, et al. Deep-ASPECTS: A Segmentation-Assisted Model for Stroke Severity Measurement. [arxiv preprint]; 2022. doi: 10.48550/ARXIV.2203.03622
- Maegerlein C, Fischer J, Mönch S, et al. Automated calculation of the Alberta stroke program early CT score: Feasibility and reliability. Radiology. 2019;291(1):141-148. doi: 10.1148/radiol.2019181228
- Nagel S, Sinha D, Day D, et al. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. Int J Stroke. 2017;12(6):615-622. doi: 10.1177/1747493016681020
- Dhand S, O’Connor P, Hughes C, Lin SP. Acute ischemic stroke: Acute management and selection for endovascular therapy. Semin Intervent Radiol. 2020;37(2):109-118. doi: 10.1055/s-0040-1709152
- Shinohara Y, Takahashi N, Lee Y, Ohmura T, Kinoshita T. Development of a deep learning model to identify hyperdense MCA sign in patients with acute ischemic stroke. Jpn J Radiol. 2020;38(2):112-117. doi: 10.1007/s11604-019-00894-4
- Brugnara G, Baumgartner M, Scholze ED, et al. Deep-learning based detection of vessel occlusions on CT-angiography in patients with suspected acute ischemic stroke. Nat Commun. 2023;14(1):4938. doi: 10.1038/s41467-023-40564-8
- Le NM, Iyyangar AS, Kim Y, et al. Machine learning-enabled automated large vessel occlusion detection improves transfer times at primary stroke centers. SVIN. 2024;4(3):e001119. doi: 10.1161/SVIN.123.001119
- Rodrigues G, Barreira CM, Bouslama M, et al. Automated large artery occlusion detection in stroke: A single-center validation study of an artificial intelligence algorithm. Cerebrovasc Dis. 2022;51(2):259-264. doi: 10.1159/000519125
- Rava RA, Peterson BA, Seymour SE, et al. Validation of an artificial intelligence-driven large vessel occlusion detection algorithm for acute ischemic stroke patients. Neuroradiol J. 2021;34(5):408-417. doi: 10.1177/1971400921998952
- Amukotuwa SA, Straka M, Smith H, et al. Automated detection of intracranial large vessel occlusions on computed tomography angiography: A single center experience. Stroke. 2019;50(10):2790-2798. doi: 10.1161/STROKEAHA.119.026259
- Alwood BT, Meyer DM, Ionita C, et al. Multicenter comparison using two AI stroke CT perfusion software packages for determining thrombectomy eligibility. J Stroke Cerebrovasc Dis. 2024;33(7):107750. doi: 10.1016/j.jstrokecerebrovasdis.2024.107750
- Albers GW, Lansberg MG, Kemp S, et al. A multicenter randomized controlled trial of endovascular therapy following imaging evaluation for ischemic stroke (DEFUSE 3). Int J Stroke. 2017;12(8):896-905. doi: 10.1177/1747493017701147
- Hu M, Chen N, Zhou X, Wu Y, Ma C. Deep learning-based computed tomography perfusion imaging to evaluate the effectiveness and safety of thrombolytic therapy for cerebral infarct with unknown time of onset. Contrast Media Mol Imaging. 2022;2022:9684584. doi: 10.1155/2022/9684584
- Shahrouki P, Kihira S, Tavakkol E, et al. Automated assessment of ischemic core on non-contrast computed tomography: A multicenter comparative analysis with CT perfusion. J NeuroIntervent Surg. 2024;16(12):1288-1293. doi: 10.1136/jnis-2023-020954
- Mallon DH, Taylor EJR, Vittay OI, Sheeka A, Doig D, Lobotesis K. Comparison of automated ASPECTS, large vessel occlusion detection and CTP analysis provided by Brainomix and RapidAI in patients with suspected ischaemic stroke. J Stroke Cerebrovasc Dis. 2022;31(10):106702. doi: 10.1016/j.jstrokecerebrovasdis.2022.106702
- Colasurdo M, Leibushor N, Robledo A, et al. Automated detection and analysis of subdural hematomas using a machine learning algorithm. J Neurosurg. 2023;138(4):1077-1084. doi: 10.3171/2022.8.JNS22888
- Chandramohan A, Krothapalli V, Augustin A, et al. Teleradiology and technology innovations in radiology: status in India and its role in increasing access to primary health care. Lancet Reg Health Southeast Asia. 2023;23:100195. doi: 10.1016/j.lansea.2023.100195
- Božić V. Radiology, Telemedicine and Artifical Intelligence; 2023. doi: 10.13140/RG.2.2.34259.96800
- Kalyanpur A, Mathur N. The Role of teleradiology in interpretation of ultrasounds performed in the emergency setting. Digit Diagn. 2024;5:231-242. doi: 10.17816/DD624586
- Kalyanpur A, Meka S, Joshi K, Somashekaran Nair HT, Mathur N. Teleradiology in Tripura: Effectiveness of a Telehealth model for the rural health sector. IJHTI. 2022;1(2):7-12. doi: 10.60142/ijhti.v1i02.36
- Kalyanpur A, Mathur N. Impact of teleradiology on oncological interpretation of PET-CT scans. Indian J Nucl Med. 2024;39(6):436-440. doi: 10.4103/ijnm.ijnm_31_24
- Kapoor N, Lacson R, Khorasani R. Workflow applications of artificial intelligence in radiology and an overview of available tools. J Am Coll Radiol. 2020;17(11):1363-1370. doi: 10.1016/j.jacr.2020.08.016
- van de Leemput SC, Prokop M, van Ginneken B, Manniesing R. Stacked bidirectional convolutional LSTMs for deriving 3D non-contrast CT from spatiotemporal 4D CT. IEEE Trans Med Imaging. 2020;39(4):985-996. doi: 10.1109/TMI.2019.2939044
- Pu A, Wang H, Ying J. Optimized backprojection filtration algorithm for postoperative reduction and analysis of respiratory infection-related factors of pelvic fractures by CT imaging. Sci Program. 2021;2021:1-10. doi: 10.1155/2021/3554718
- Shlobin NA, Baig AA, Waqas M, et al. Artificial intelligence for large-vessel occlusion stroke: A systematic review. World Neurosurg. 2022;159:207-220.e1. doi: 10.1016/j.wneu.2021.12.004
- Zebrowitz E, Dadoo S, Brabant P, et al. The impact of artificial intelligence on large vessel occlusion stroke detection and management: A systematic review meta-analysis. Intell Based Med. 2024;10:100161. doi: 10.1016/j.ibmed.2024.100161
- Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: A systematic review. J NeuroIntervent Surg. 2020;12(2):156-164. doi: 10.1136/neurintsurg-2019-015135
- Dantas J, Ribeiro G, Dagostin C, et al. Can artificial intelligence to detect large vessel occlusion improve patient care? A systematic review and meta-analysis (P5-5.026). Neurology. 2024;102(17_supplement_1):6072. doi: 10.1212/WNL.0000000000206218
- Leveraging teleradiology with artificial intelligence. Bull World Health Organ. 2025;103(2):86-87. doi: 10.2471/BLT.25.020225
- Weiner EB, Dankwa-Mullan I, Nelson WA, Hassanpour S. Ethical challenges and evolving strategies in the integration of artificial intelligence into clinical practice. PLOS Digit Health. 2025;4(4):e0000810. doi: 10.1371/journal.pdig.0000810
- Siala H, Wang Y. SHIFTing artificial intelligence to be responsible in healthcare: A systematic review. Soc Sci Med. 2022;296:114782. doi: 10.1016/j.socscimed.2022.114782
- Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195. doi: 10.1186/s12916-019-1426-2
- Marey A, Arjmand P, Alerab ADS, et al. Explainability, transparency and black box challenges of AI in radiology: Impact on patient care in cardiovascular radiology. Egypt J Radiol Nucl Med. 2024;55(1):183. doi: 10.1186/s43055-024-01356-2
- Neri E, Aghakhanyan G, Zerunian M, et al. Explainable AI in radiology: A white paper of the Italian Society of Medical and Interventional Radiology. Radiol Med. 2023;128(6):755-764. doi: 10.1007/s11547-023-01634-5
- Shurrab S, Guerra-Manzanares A, Magid A, Piechowski- Jozwiak B, Atashzar SF, Shamout FE. Multimodal machine learning for stroke prognosis and diagnosis: A systematic review. IEEE J Biomed Health Inform. 2024;28(11):6958-6973. doi: 10.1109/JBHI.2024.3448238