AccScience Publishing / AIH / Volume 1 / Issue 4 / DOI: 10.36922/aih.3930
ORIGINAL RESEARCH ARTICLE

An exploratory study on the potential of ChatGPT as an AI-assisted diagnostic tool for visceral leishmaniasis

Paulo Adriano Schwingel1,2,3,4†* Dino Schwingel1,2† Samuel Ricarte de Aquino1,5† Aline Rafaela Soares da Silva1,2,3 Pedro Paulo Ramos da Silva1,2 Renato Augusto da Cruz Pereira1,2,6 Daniela Conceição Gomes Gonçalves e Silva1,2,4 Amanda Alves Marcelino da Silva1,2,3,4 Flavia Emília Cavalcante Valença Fernandes1,2 Maria Jacqueline Silva Ribeiro1,2,6 Paulo Ditarso Maciel Júnior1,7 Paulo Gustavo Serafim de Carvalho1,8 Ricardo Kenji Shiosaki1,2 Rogério Fabiano Gonçalves1,2 Bruno Bavaresco Gambassi1,2,6 Paula Andreatta Maduro1,2,4
Show Less
1 AI-assisted Diagnostics Research Group, Universidade de Pernambuco, Petrolina, Pernambuco, Brazil
2 Human Performance Research Laboratory, Universidade de Pernambuco, Petrolina, Pernambuco, Brazil
3 Postgraduate Program in Rehabilitation and Functional Performance, Universidade de Pernambuco, Petrolina, Pernambuco, Brazil
4 Postgraduate Program in Health Sciences, Universidade de Pernambuco, Recife, Pernambuco, Brazil
5 Dr. Washington Antônio de Barros Teaching Hospitalian Hospital Services Company, Petrolina, Pernambuco, Brazil
6 Postgraduate Program on Management and Health Programs and Services, CEUMA University, São Luís, Maranhão, Brazil
7 Postgraduate Program in Information Technology, Federal Institute of Paraíba, João Pessoa, Paraíba, Brazil
8 College of Agricultural and Environmental Sciences, Federal University of Vale do São Francisco, Juazeiro, Bahia, Brazil
AIH 2024, 1(4), 97–106; https://doi.org/10.36922/aih.3930
Submitted: 13 June 2024 | Accepted: 20 September 2024 | Published: 16 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Visceral leishmaniasis (VL) is a severe parasitic disease that poses significant diagnostic challenges due to its complex presentation and the necessity for comprehensive diagnostic methods. This exploratory study investigates the potential of Chat Generative Pre-trained Transformer (ChatGPT)/GPT-4, an artificial intelligence (AI) chatbot, in assisting the diagnostic process for VL. We evaluated the diagnostic accuracy of ChatGPT/GPT-4 in generating differential diagnosis lists for eight clinical vignette cases of VL, authored by a Brazilian infectious disease doctor. Our findings reveal that ChatGPT/GPT-4 included VL in the top five differential diagnoses in 75% of the cases (95% confidence interval [CI]: 40.1 – 93.7%) and identified VL as the top diagnosis in 50% of the cases (95% CI: 30.3 – 86.5%). These results underscore the high potential of ChatGPT/GPT-4 as an AI-assisted diagnostic tool, which is capable of providing accurate differential diagnoses and assisting healthcare professionals in resource-limited settings. The study highlights the broader applicability of AI chatbots in medical diagnostics, not only for common conditions but also for specialized and less prevalent diseases like VL. By integrating AI tools into the diagnostic workflow, healthcare providers can enhance their diagnostic accuracy and efficiency, ultimately improving patient outcomes. This research contributes to the growing body of evidence supporting the utility of AI in healthcare and underscores the need for further studies to validate these findings across larger and more diverse clinical scenarios.

Keywords
Tropical neglected diseases
Artificial neural network
Differential diagnosis
Artificial intelligence-assisted diagnosis
Healthcare technology
Funding
This study received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant number 408003/2023-5 and from the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) under grant numbers APQ- 1413-4.08/21 and APQ-0238-4.01/24. Additionally, Paulo Adriano Schwingel was awarded a Research Productivity Grant (BPP) from the FACEPE under number BPP-0003- 4.01/24 and Daniela Conceição Gomes Gonçalves e Silva was awarded a Technical Cooperation Grant (BCT) from the FACEPE under number BCT-0355-4.08/23.
Conflict of interest
Paulo Adriano Schwingel is an editorial board member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Dawkins M, Lin Z, Cohen C, Mikkilineni S, Shakil F, Tewari V. A rare case of Visceral Leishmaniasis diagnosed by endoscopy in an anemic patient with HIV/AIDS. ACG Case Rep J. 2023;10(7):e01108. doi: 10.14309/crj.0000000000001108

 

  1. Rodrigues Monteiro M, Serra JT, Gomes F, Tinoco J. Visceral Leishmaniasis in an immunocompetent patient: A case report. Acta Med Port. 2023;36:835-840. doi: 10.20344/amp.19010

 

  1. Pandey K. Emerging association between serum vitamin D and degree of anemia in visceral leishmaniasis. Biomed J Sci Tech Res. 2023;49(2):40519-40521. doi: 10.26717/bjstr.2023.49.007781

 

  1. Gonçalves C, Diniz B, Guerreiro B, et al. A case of visceral leishmaniasis in a child on platelet recovery after treatment with filgrastim. Resid Pediatr. 2023;13(1):1-4. doi: 10.25060/residpediatr-2023.v13n1-485

 

  1. Silveira FT, Sousa Junior EC, Silvestre RV, et al. Comparative genomic analyses of new and old world viscerotropic leishmanine parasites: Further insights into the origins of visceral leishmaniasis agents. Microorganisms. 2022;11(1):25. doi: 10.3390/microorganisms11010025

 

  1. Lainson R, Rangel BF. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: A review. Mem Inst Oswaldo Cruz. 2005;100(8):811-827. doi: 10.1590/s0074-02762005000800001

 

  1. Ali N, Nakhasi HL, Valenzuela JG, Reis AB. Targeted immunology for prevention and cure of VL. Front Immunol. 2014;5:660. doi: 10.3389/fimmu.2014.00660

 

  1. Singh OP, Sundar S. Immunotherapy and targeted therapies in treatment of visceral leishmaniasis: Current status and future prospects. Front Immunol. 2014;5:296. doi: 10.3389/fimmu.2014.00296

 

  1. Alvar J, Vélez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671. doi: 10.1371/journal.pone.0035671

 

  1. Paul A, Singh S. Visceral leishmaniasis in the COVID-19 pandemic era. Trans R Soc Trop Med Hyg. 2023;117(2):67-71. doi: 10.1093/trstmh/trac100

 

  1. Rahim S, Sharif MM, Amin MR, Rahman MT, Karim MM. Real time PCR-based diagnosis of human visceral leishmaniasis using urine samples. PLOS Glob Public Health. 2022;2(12):e0000834. doi: 10.1371/journal.pgph.0000834

 

  1. Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis: What are the needs for diagnosis, treatment and control? Nat Rev Microbiol. 2007;5(11):873-882. doi: 10.1038/nrmicro1748

 

  1. Cavalcanti MP, Barros De Lorena VM, Gomes YD. Biotechnological advances for the diagnosis of infectious and parasitic diseases. J Trop Pathol. 2008;37(1):1-14. doi: 10.5216/rpt.v37i1.4026

 

  1. Makau-Barasa LK, Ochol D, Yotebieng KA, Adera CB, De Souza DK. Moving from control to elimination of Visceral Leishmaniasis in East Africa. Front Trop Dis. 2022;3:965609. doi: 10.3389/fitd.2022.965609

 

  1. Mumtaz U, Ahmed A, Mumtaz S. LLMs-healthcare: Current applications and challenges of large language models in various medical specialties. Artif Intell Health. 2024;1(2):16-28. doi: 10.36922/aih.2558

 

  1. Sukeda I, Suzuki M, Sakaji H, Kodera S. Development and analysis of medical instruction-tuning for Japanese large language models. Artif Intell Health. 2024;1(2):107-116. doi: 10.36922/aih.2695

 

  1. Meral G, Ateş S, Günay S, Öztürk A, Kuşdoğan M. Comparative analysis of ChatGPT, Gemini and emergency medicine specialist in ESI triage assessment. Am J Emerg Med. 2024;81:146-150. doi: 10.1016/j.ajem.2024.05.001

 

  1. Chavez MR, Butler TS, Rekawek P, Heo H, Kinzler WL. Chat generative pre-trained transformer: Why we should embrace this technology. Am J Obstet Gynecol. 2023;228(6):706-711. doi: 10.1016/j.ajog.2023.03.010

 

  1. Vaswani A, Shazeer N, Parmar N, et al. Attention is all You Need. ArXiv; 2017. doi: 10.48550/arXiv.1706.03762

 

  1. Li N, Liu S, Liu Y, Zhao S, Liu M. Neural Speech Synthesis with Transformer Network. 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019; 2018. p. 6706-6713. doi: 10.1609/aaai.v33i01.33016706

 

  1. Hirosawa T, Harada Y, Yokose M, Sakamoto T, Kawamura R, Shimizu T. Diagnostic accuracy of differential-diagnosis lists generated by Generative Pretrained Transformer 3 chatbot for clinical vignettes with common chief complaints: A pilot study. Int J Environ Res Public Health. 2023;20(4):3378. doi: 10.3390/ijerph20043378

 

  1. Mizuta K, Hirosawa T, Harada Y, Shimizu T. Can ChatGPT-4 evaluate whether a differential diagnosis list contains the correct diagnosis as accurately as a physician? Diagnosis (Berl). 2024;11(3):321-324. doi: 10.1515/dx-2024-0027

 

  1. Ouyang L, Wu J, Jiang X, et al. Training Language Models to Follow Instructions with Human Feedback. ArXiv; 2022. doi: 10.48550/arXiv.2203.02155

 

  1. Johnson D, Goodman R, Patrinely J, et al. Assessing the accuracy and reliability of AI-generated medical responses: An evaluation of the Chat-GPT model. Res Sq. 2023:rs.3.rs-2566942. doi: 10.21203/rs.3.rs-2566942/v1

 

  1. Shahsavar Y, Choudhury A. User Intentions to use ChatGPT for self-diagnosis and health-related purposes: Cross-sectional survey study. JMIR Hum Factors. 2023;10:e47564. doi: 10.2196/47564

 

  1. Ueda D, Walston SL, Matsumoto T, Deguchi R, Tatekawa H, Miki Y. Evaluating GPT-4-based ChatGPT’s clinical potential on the NEJM quiz. BMC Digital Health. 2024;2(1):4. doi: 10.1186/S44247-023-00058-5

 

  1. Cheng K, Li Z, He Y, et al. Potential Use of artificial intelligence in infectious disease: Take chatGPT as an example. Ann Biomed Eng. 2023;51(6):1130-1135. doi: 10.1007/s10439-023- 03203-3

 

  1. Giannos P. Evaluating the limits of AI in medical specialisation: ChatGPT’s performance on the UK neurology specialty certificate examination. BMJ Neurol Open. 2023;5(1):e000451. doi: 10.1136/bmjno-2023-000451

 

  1. Cheng K, Guo Q, He Y, et al. Artificial intelligence in sports medicine: Could GPT-4 make human doctors obsolete? Ann Biomed Eng. 2023;51(8):1658-1662. doi: 10.1007/s10439- 023-03213-1

 

  1. Biswas S. ChatGPT and the future of medical writing. Radiology. 2023;307(2):e223312. doi: 10.1148/radiol.223312

 

  1. Heng JJ, Teo DB, Tan LF. The impact of chat generative pre-trained transformer (ChatGPT) on medical education. Postgrad Med J. 2023;99(1176):1125-1127. doi: 10.1093/postmj/qgad058

 

  1. Kaliyadan F, Seetharam KA. ChatGPT-Quo vadis? Indian Dermatol Online J. 2023;14(4):457-458. doi: 10.4103/idoj.idoj_344_23

 

  1. El Haj M, Boutoleau-Bretonnière C, Gallouj K, et al. ChatGPT as a diagnostic aid in Alzheimer’s disease: An exploratory study. J Alzheimers Dis Rep. 2024;8(1):495-500. doi: 10.3233/adr-230191

 

  1. Egli A. ChatGPT, GPT-4, and other large language models: The next revolution for clinical microbiology? Clin Infect Dis. 2023;77(9):1322-1328. doi: 10.1093/cid/ciad407

 

  1. Bahrini A, Khamoshifar M, Abbasimehr H, et al. ChatGPT: Applications, Opportunities, and Threats. In: 2023 Systems and Information Engineering Design Symposium (SIEDS). United States: IEEE; 2023. p. 274-279. doi: 10.1109/sieds58326.2023.10137850

 

  1. Temsah MH, Jamal A, Aljamaan F, Al-Tawfiq JA, Al-Eyadhy A. ChatGPT-4 and the global burden of disease study: Advancing personalized healthcare through artificial intelligence in clinical and translational medicine. Cureus. 2023;15(5):e39384. doi: 10.7759/cureus.39384

 

  1. Santhoshkumar SP, Beaulah HL, Susithra K. A study on scope of artificial intelligence in diagnostic medicine. Recent Res Rev J. 2023;2(1):39-53. doi: 10.36548/rrrj.2023.1.04

 

  1. Rathore FA, Rathore MA. The emerging role of artificial intelligence in healthcare. J Pak Med Assoc. 2023;73(7): 1368-1369. doi: 10.47391/JPMA.23-48

 

  1. Jain P, Zameer F, Khan K, et al. Artificial intelligence in diagnosis and monitoring of atopic dermatitis: From pixels to predictions. Artif Intell Health. 2024;1(2):48-65. doi: 10.36922/aih.2775

 

  1. Van Sassen C, Mamede S, Bos M, Van den Broek W, Bindels P, Zwaan L. Do malpractice claim clinical case vignettes enhance diagnostic accuracy and acceptance in clinical reasoning education during GP training? BMC Med Educ. 2023;23(1):474. doi: 10.1186/S12909-023-04448-1

 

  1. Elasan S, Ateş Y. Artificial intelligence (AI) and ethics in medicine at a global level: Benefits and risks. In: Current Researches in Health Sciences-II. Türkiye: Özgür Yayınları; 2023. doi: 10.58830/ozgur.pub128.c508

 

  1. Aquino YS. Making decisions: Bias in artificial intelligence and data-driven diagnostic tools. Aust J Gen Pract. 2023;52(7):439-442. doi: 10.31128/ajgp-12-22-6630

 

  1. Chakraborty S, Chopra H, Akash S, Chakraborty C, Dhama K. Advances in artificial intelligence (AI)-based diagnosis in clinical practice-correspondence. Ann Med Surg (Lond). 2023;85(7):3757-3758. doi: 10.1097/MS9.0000000000000959

 

  1. Kanter GP, Packel EA. Health care privacy risks of AI chatbots. JAMA. 2023;330(4):311-312. doi: 10.1001/jama.2023.9618

 

  1. Marks M, Haupt CE. AI chatbots, health privacy, and challenges to HIPAA compliance. JAMA. 2023;330(4): 309-310. doi: 10.1001/jama.2023.9458

 

  1. Karako K, Song P, Chen Y, Tang W. New possibilities for medical support systems utilizing artificial intelligence (AI) and data platforms. Biosci Trends. 2023;17(3):186-189. doi: 10.5582/bst.2023.01138

 

  1. Paladino MS. Artificial intelligence in medicine. Ethical reflections from the thought of Edmund Pellegrino. Cuad Bioet. 2023;34(110):25-35. doi: 10.30444/CB.140
Share
Back to top
Artificial Intelligence in Health, Electronic ISSN: 3029-2387 Print ISSN: 3041-0894, Published by AccScience Publishing