AccScience Publishing / TD / Online First / DOI: 10.36922/TD025110019
SHORT COMMUNICATION

Sorafenib generates microvesicle particles in non-small cell lung cancer

Yevgeniy Gladkiy1 Anita Thyagarajan2* Morgann Hendrixson1 Ravi P. Sahu1*
Show Less
1 Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
2 Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
Tumor Discovery, 025110019 https://doi.org/10.36922/TD025110019
Received: 11 March 2025 | Revised: 30 April 2025 | Accepted: 7 May 2025 | Published online: 19 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Despite the improved clinical outcomes resulting from the use of sorafenib, the development of resistance mechanisms continues to undermine its treatment efficacy. Recent studies have implicated the role of a phospholipid mediator, platelet-activating factor receptor (PAFR) pathway, and extracellular vesicles known as microvesicle particles (MVP) in influencing cellular behavior and the efficacy of therapeutic agents. In this study, we determined the impact of the PAFR pathway and the acid sphingomyelinase (aSMase), which is required for the biogenesis of MVP, on sorafenib-induced effects on lung cancer growth and MVP release. Using A549 and H1299 non-small cell lung cancer (NSCLC) cell lines, we showed that sorafenib treatment reduced cell viability in a dose and time-dependent manner. Notably, sorafenib also enhanced MVP formation in both NSCLC cell lines. This MVP release was significantly attenuated by pharmacologic inhibition of the PAFR pathway through the WEB2086 compound and the aSMase inhibitor, imipramine, indicating the involvement of the PAFR and aSMase in sorafenib-induced MVP biogenesis. Moreover, co-treatment with imipramine enhanced the cytotoxic effects of sorafenib, suggesting that targeting MVP-associated pathways may improve sorafenib response. Collectively, these findings offer mechanistic insight into how sorafenib modulates MVP release and supports the therapeutic potential of combining tyrosine kinase inhibitors with agents that disrupt MVP biogenesis in NSCLC.

Keywords
Non-small cell lung cancer
Tyrosine kinase inhibitors
Sorafenib
Platelet-activating factor-receptor
Acid sphingomyelinase
Microvesicle particles
Funding
The financial support from the BSOM Medical Student Research Grant (Y.G. and M.H. with A.T. and R.P.S. as mentors) and the NIH R21 grant ES033806 (R.P.S.) are greatly appreciated.
Conflict of interest
Ravi P. Sahu is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834

 

  1. Society AC. Lung Cancer; 2024. Available from: https://www. cancer.org/cancer/types/lung-cancer.html [Last accessed on 2024 Dec 18].

 

  1. Hendriks LEL, Remon J, Faivre-Finn C, et al. Non-small-cell lung cancer. Nat Rev Dis Primers. 2024;10(1):71. doi: 10.1038/s41572-024-00551-9

 

  1. Hendrixson M, Gladkiy Y, Thyagarajan A, Sahu RP. Efficacy of sorafenib-based therapies for non-small cell lung cancer. Med Sci (Basel). 2024;12(2):20. doi: 10.3390/medsci12020020

 

  1. Lin W, Wang X, Diao M, et al. Promoting reactive oxygen species accumulation to overcome tyrosine kinase inhibitor resistance in cancer. Cancer Cell Int. 2024;24(1):239. doi: 10.1186/s12935-024-03418-x

 

  1. Weng MS, Chang JH, Hung WY, Yang YC, Chien MH. The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J Exp Clin Cancer Res. 2018;37(1):61. doi: 10.1186/s13046-018-0728-0

 

  1. Tsoupras A, Adamantidi T, Finos MA, et al. Re-assessing the role of platelet activating factor and its inflammatory signaling and inhibitors in cancer and anti-cancer strategies. Front Biosci (Landmark Ed). 2024;29(10):345. doi: 10.31083/j.fbl2910345

 

  1. Haak VM, Huang S, Panigrahy D. Debris-stimulated tumor growth: A pandora’s box? Cancer Metastasis Rev. 2021;40(3):791-801. doi: 10.1007/s10555-021-09998-8

 

  1. Hackler PC, Reuss S, Konger RL, Travers JB, Sahu RP. Systemic platelet-activating factor receptor activation augments experimental lung tumor growth and metastasis. Cancer Growth Metastasis. 2014;7:27-32. doi: 10.4137/cgm.S14501

 

  1. Sahu RP, Konger RL, Travers JB. Platelet-activating factor-receptor and tumor immunity. JSM Cell Dev Biol. 2014;2(1):1008. doi: 10.47739/2379-061X/1008

 

  1. Sahu RP, Harrison KA, Weyerbacher J, et al. Radiation therapy generates platelet-activating factor agonists. Oncotarget. 2016;7(15):20788-20800. doi: 10.18632/oncotarget.7878

 

  1. Sahu RP, Turner MJ, DaSilva SC, et al. The environmental stressor ultraviolet B radiation inhibits murine antitumor immunity through its ability to generate platelet-activating factor agonists. Carcinogenesis. 2012;33(7):1360-1367. doi: 10.1093/carcin/bgs152

 

  1. Sahu RP, Ocana JA, Harrison KA, et al. Chemotherapeutic agents subvert tumor immunity by generating agonists of platelet-activating factor. Cancer Res. 2014;74(23):7069-7078. doi: 10.1158/0008-5472.Can-14-2043

 

  1. Chauhan SJ, Thyagarajan A, Chen Y, Travers JB, Sahu RP. Platelet-activating factor-receptor signaling mediates targeted therapies-induced microvesicle particles release in lung cancer cells. Int J Mol Sci. 2020;21(22):8517. doi: 10.3390/ijms21228517

 

  1. Chauhan SJ, Thyagarajan A, Sahu RP. Effects of miRNA- 149-5p and platelet-activating factor-receptor signaling on the growth and targeted therapy response on lung cancer cells. Int J Mol Sci. 2022;23(12):6772. doi: 10.3390/ijms23126772

 

  1. Travers JB, Rohan JG, Sahu RP. New insights into the pathologic roles of the platelet-activating factor system. Front Endocrinol (Lausanne). 2021;12:624132. doi: 10.3389/fendo.2021.624132

 

  1. Bihl JC, Rapp CM, Chen Y, Travers JB. UVB generates microvesicle particle release in part due to platelet-activating factor signaling. Photochem Photobiol. 2016;92(3):503-506. doi: 10.1111/php.12577

 

  1. Liu L, Awoyemi AA, Fahy KE, et al. Keratinocyte-derived microvesicle particles mediate ultraviolet B radiation-induced systemic immunosuppression. J Clin Invest. 2021;131(10):e144963. doi: 10.1172/jci144963

 

  1. Thyagarajan A, Kadam SM, Liu L, et al. Gemcitabine induces microvesicle particle release in a platelet-activating factor-receptor-dependent manner via modulation of the MAPK pathway in pancreatic cancer cells. Int J Mol Sci. 2018;20(1):32. doi: 10.3390/ijms20010032

 

  1. Patel KD, Zimmerman GA, Prescott SM, McIntyre TM. Novel leukocyte agonists are released by endothelial cells exposed to peroxide. J Biol Chem. 1992;267(21):15168-15175. doi: 10.1016/S0021-9258(18)42161-8

 

  1. Smiley PL, Patel KD, Stremler KE, Zimmerman GA, Prescott SM, McIntyre TM. Novel neutrophil agonists: Oxidatively-fragmented phosphatidylcholines. In: Bailey JM, editor. Prostaglandins, Leukotrienes, Lipoxins, and PAF: Mechanism of Action, Molecular Biology, and Clinical Applications. Boston, MA: Springer US; 1991. p. 269-279.

 

  1. Fahy K, Liu L, Rapp CM, et al. UVB-generated microvesicle particles: A novel pathway by which a skin-specific stimulus could exert systemic effects. Photochem Photobiol. 2017;93(4):937-942. doi: 10.1111/php.12703

 

  1. Maacha S, Bhat AA, Jimenez L, et al. Extracellular vesicles-mediated intercellular communication: Roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer. 2019;18(1):55. doi: 10.1186/s12943-019-0965-7

 

  1. Muralidharan-Chari V, Kohan HG, Asimakopoulos AG, et al. Microvesicle removal of anticancer drugs contributes to drug resistance in human pancreatic cancer cells. Oncotarget. 2016;7(31):50365-50379. doi: 10.18632/oncotarget.10395

 

  1. Yang Q, Xu J, Gu J, et al. Extracellular vesicles in cancer drug resistance: Roles, mechanisms, and implications. Adv Sci. 2022;9(34):2201609. doi: 10.1002/advs.202201609

 

  1. Yang Y, Li S, Wang Y, Zhao Y, Li Q. Protein tyrosine kinase inhibitor resistance in malignant tumors: Molecular mechanisms and future perspective. Signal Transduct Target Ther. 2022;7(1):329. doi: 10.1038/s41392-022-01168-8

 

  1. Catalano M, O’Driscoll L. Inhibiting extracellular vesicles formation and release: A review of EV inhibitors. J Extracell Vesicles. 2020;9(1):1703244. doi: 10.1080/20013078.2019.1703244

 

  1. Bianco F, Perrotta C, Novellino L, et al. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J. 2009;28(8):1043-1054. doi: 10.1038/emboj.2009.45

 

  1. Deng L, Peng Y, Jiang Y, et al. Imipramine protects against bone loss by inhibition of osteoblast-derived microvesicles. Int J Mol Sci. 2017;18(5):1013. doi: 10.3390/ijms18051013

 

  1. Kosgodage US, Trindade RP, Thompson PR, Inal JM, Lange S. Chloramidine/bisindolylmaleimide-i-mediated inhibition of exosome and microvesicle release and enhanced efficacy of cancer chemotherapy. Int J Mol Sci. 2017;18(5):1007. doi: 10.3390/ijms18051007

 

  1. Goldkorn T, Chung S, Filosto S. Lung cancer and lung injury: The dual role of ceramide. Handb Exp Pharmacol. 2013;216:93-113. doi: 10.1007/978-3-7091-1511-4-5

 

  1. Irep N, Inci K, Tokgun PE, Tokgun O. Exosome inhibition improves response to first-line therapy in small cell lung cancer. J Cell Mol Med. 2024;28(4):e18138. doi: 10.1111/jcmm.18138

 

  1. Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother. 2021;139:111610. doi: 10.1016/j.biopha.2021.111610

 

  1. Companioni O, Mir C, Garcia-Mayea Y, LLeonart ME. Targeting sphingolipids for cancer therapy. Front Oncol. 2021;11:745092. doi: 10.3389/fonc.2021.745092

 

  1. Hoshi A, Kanzawa F, Kuretani K. Enhancement of antitumor activity of cyclophosphamide with imipramine. Chem Pharm Bull (Tokyo). 1969;17(8):1694-1697. doi: 10.1248/cpb.17.1694

 

  1. Wang Y, Wang X, Wang X, et al. Imipramine impedes glioma progression by inhibiting YAP as a hippo pathway independent manner and synergizes with temozolomide. J Cell Mol Med. 2021;25(19):9350-9363. doi: 10.1111/jcmm.16874

 

  1. Chryplewicz A, Scotton J, Tichet M, et al. Cancer cell autophagy, reprogrammed macrophages, and remodeled vasculature in glioblastoma triggers tumor immunity. Cancer Cell. 2022;40(10):1111-1127.e9. doi: 10.1016/j.ccell.2022.08.014

 

  1. Li J, Pan YY, Zhang Y. Synergistic interaction between sorafenib and gemcitabine in EGFR-TKI-sensitive and EGFR-TKI-resistant human lung cancer cell lines. Oncol Lett. 2013;5(2):440-446. doi: 10.3892/ol.2012.1017

 

  1. Martinelli E, Troiani T, Morgillo F, et al. Synergistic antitumor activity of sorafenib in combination with epidermal growth factor receptor inhibitors in colorectal and lung cancer cells. Clin Cancer Res. 2010;16(20):4990-5001. doi: 10.1158/1078-0432.Ccr-10-0923

 

  1. Wang J, Ma S, Chen X, Zhang S, Wang Z, Mei Q. The novel PI3K inhibitor S1 synergizes with sorafenib in non-small cell lung cancer cells involving the Akt-S6 signaling. Invest New Drugs. 2019;37(5):828-836. doi: 10.1007/s10637-018-0698-2

 

  1. Kim YS, Jin HO, Seo SK, et al. Sorafenib induces apoptotic cell death in human non-small cell lung cancer cells by down-regulating mammalian target of rapamycin (mTOR)- dependent survivin expression. Biochem Pharmacol. 2011;82(3):216-226. doi: 10.1016/j.bcp.2011.04.011

 

  1. Li Y, Yan H, Xu X, Liu H, Wu C, Zhao L. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol Lett. 2020;19(1):323-333. doi: 10.3892/ol.2019.11066

 

  1. Lei C, Liu D, Zhou Q, Ma S, Qian H. RETRACTED: Engineering of dopamine conjugated with bovine serum albumin and zeolite imidazole framework: A promising drug delivery nanocarrier on lung cancer cells. Heliyon. 2024;10(17):e36580. doi: 10.1016/j.heliyon.2024.e36580

 

  1. Bow YD, Ko CC, Chang WT, et al. A novel quinoline derivative, DFIQ, sensitizes NSCLC cells to ferroptosis by promoting oxidative stress accompanied by autophagic dysfunction and mitochondrial damage. Cancer Cell Int. 2023;23(1):171. doi: 10.1186/s12935-023-02984-w

 

  1. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169-181. doi: 10.1038/nrc2088

 

  1. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099-7109. doi: 10.1158/0008-5472.Can-04-1443

 

  1. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125-134. doi: 10.1056/NEJMoa060655

 

  1. Zingone A, Brown D, Bowman ED, et al. Relationship between anti-depressant use and lung cancer survival. Cancer Treat Res Commun. 2017;10:33-39. doi: 10.1016/j.ctarc.2017.01.001

 

  1. Chen C, Ju R, Shi J, et al. Carboxyamidotriazole synergizes with sorafenib to combat non-small cell lung cancer through inhibition of NANOG and aggravation of apoptosis. J Pharmacol Exp Ther. 2017;362(2):219-229. doi: 10.1124/jpet.117.240986

 

  1. Chen JC, Chuang HY, Hsu FT, Chen YC, Chien YC, Hwang JJ. Sorafenib pretreatment enhances radiotherapy through targeting MEK/ERK/NF-κB pathway in human hepatocellular carcinoma-bearing mouse model. Oncotarget. 2016;7(51):85450-85463. doi: 10.18632/oncotarget.13398

 

  1. Giovannetti E, Labots M, Dekker H, et al. Molecular mechanisms and modulation of key pathways underlying the synergistic interaction of sorafenib with erlotinib in non-small-cell-lung cancer (NSCLC) cells. Curr Pharm Des. 2013;19(5):927-939. doi: 10.2174/1381612811306050927

 

  1. Li J, Wang S, Su ZF, Yuan Y. Synergistic effects of sorafenib in combination with gemcitabine or pemetrexed in lung cancer cell lines with K-ras mutations. Contemp Oncol (Pozn). 2016;20(1):33-38. doi: 10.5114/wo.2016.58499

 

  1. Riess JW, Jahchan NS, Das M, et al. A phase iia study repositioning desipramine in small cell lung cancer and other high-grade neuroendocrine tumors. Cancer Treat Res Commun. 2020;23:100174. doi: 10.1016/j.ctarc.2020.100174

 

  1. Kachler K, Bailer M, Heim L, et al. Enhanced acid sphingomyelinase activity drives immune evasion and tumor growth in non-small cell lung carcinoma. Cancer Res. 2017;77(21):5963-5976. doi: 10.1158/0008-5472.Can-16-3313

 

  1. Hasan H, Sohal IS, Soto-Vargas Z, et al. Extracellular vesicles released by non-small cell lung cancer cells drive invasion and permeability in non-tumorigenic lung epithelial cells. Sci Rep. 2022;12(1):972. doi: 10.1038/s41598-022-04940-6

 

Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing