AccScience Publishing / TD / Online First / DOI: 10.36922/TD025200039
LETTER TO EDITOR

Redefining the role of radiation oncologists in the AI era

Melek Yakar1*
Show Less
1 Department of Radiation Oncology, Faculty of Medicine, Osmangazi University, Eskişehir, Turkey
Tumor Discovery, 025200039 https://doi.org/10.36922/TD025200039
Received: 15 May 2025 | Accepted: 22 May 2025 | Published online: 10 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Conflict of interest
The author declares that she has no conflict of interest.
References
  1. Wang L, Chen X, Zhang L, et al. Artificial intelligence in clinical decision support systems for oncology. Int J Med Sci. 2023;20(1):79-86. doi: 10.7150/ijms.77205

 

  1. Nafees A, Khan M, Chow R, et al. Evaluation of clinical decision support systems in oncology: An updated systematic review. Crit Rev Oncol Hematol. 2023;192:104143. doi: 10.1016/j.critrevonc.2023.104143

 

  1. Erden MB, Cansiz S, Caki O, et al. FourierLoss: Shape-aware l function with Fourier descriptors. Neurocomputing. 2025;638:130155. doi: 10.1016/j.neucom.2025.130155

 

  1. Chen M, Wu S, Zhao W, Zhou Y, Zhou Y, Wang G. Application of deep learning to auto-delineation of target volumes and organs at risk in radiotherapy. Cancer Radiother. 2022;26(3):494-501. doi: 10.1016/j.canrad.2021.08.020

 

  1. Matoska T, Patel M, Liu H, Beriwal S. Review of deep learning based autosegmentation for clinical target volume: Current status and future directions. Adv Radiat Oncol. 2024;9(5):101470. doi: 10.1016/j.adro.2024.101470

 

  1. Wang TW, Hong JS, Huang JW, Liao CY, Lu CF, Wu YT. Systematic review and meta-analysis of deep learning applications in computed tomography lung cancer segmentation. Radiother Oncol. 2024;197:110344. doi: 10.1016/j.radonc.2024.110344

 

  1. Mackay K, Bernstein D, Glocker B, Kamnitsas K, Taylor A. A review of the metrics used to assess auto-contouring systems in radiotherapy. Clin Oncol (R Coll Radiol). 2023;35(6):354-369. doi: 10.1016/j.clon.2023.01.016

 

  1. Bahloul MA, Jabeen S, Benoumhani S, Alsaleh HA, Belkhatir Z, Al-Wabil A. Advancements in synthetic CT generation from MRI: A review of techniques, and trends in radiation therapy planning. J Appl Clin Med Phys. 2024;25(11):e14499. doi: 10.1002/acm2.14499

 

  1. Giraud P, Bibault JE. Artificial intelligence in radiotherapy: Current applications and future trends. Diagn Interv Imaging. 2024;105(12):475-480. doi: 10.1016/j.diii.2024.06.001

 

  1. Byrne M, Archibald-Heeren B, Hu Y, et al. Varian ethos online adaptive radiotherapy for prostate cancer: Early results of contouring accuracy, treatment plan quality, and treatment time. J Appl Clin Med Phys. 2022;23(1):e13479. doi: 10.1002/acm2.13479

 

  1. Zwanenburg A, Price G, Löck S. Artificial intelligence for response prediction and personalisation in radiation oncology. Strahlenther Onkol. 2025;201(3):266-273. doi: 10.1007/s00066-024-02281-z

 

  1. Akcay M, Etiz D, Celik O. Prediction of survival and recurrence patterns by machine learning in gastric cancer cases undergoing radiation therapy and chemotherapy. Adv Radiat Oncol. 2020;5(6):1179-1187. doi: 10.1016/j.adro.2020.07.007

 

  1. Kraus KM, Oreshko M, Schnabel JA, Bernhardt D, Combs SE, Peeken JC. Dosiomics and radiomics-based prediction of pneumonitis after radiotherapy and immune checkpoint inhibition: The relevance of fractionation. Lung Cancer. 2024;189:107507. doi: 10.1016/j.lungcan.2024.107507

 

  1. Isaksson LJ, Pepa M, Zaffaroni M, et al. Machine learning-based models for prediction of toxicity outcomes in radiotherapy. Front Oncol. 2020;10:790. doi: 10.3389/fonc.2020.00790

 

  1. Bitterman DS, Miller TA, Mak RH, Savova GK. Clinical natural language processing for radiation oncology: A review and practical primer. Int J Radiat Oncol Biol Phys. 2021;110(3):641-655. doi: 10.1016/j.ijrobp.2021.01.044

 

  1. Naik N, Hameed BMZ, Shetty DK, et al. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Front Surg. 2022;9:862322. doi: 10.3389/fsurg.2022.862322

 

  1. Lahmi L, Mamzer MF, Burgun A, Durdux C, Bibault JE. Ethical aspects of artificial intelligence in radiation oncology. Semin Radiat Oncol. 2022;32(4):442-448. doi: 10.1016/j.semradonc.2022.06.013
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing