Genomic alterations of homologous recombination deficiency in Chinese NSCLC patients

Homologous recombination deficiency (HRD) affects genomic stability and has potential as a biomarker for the effectiveness of poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors. However, the clinical and molecular profile of HRD in non-small cell lung cancer (NSCLC), particularly in the Chinese population, remains poorly characterized. Based on the next-generation sequencing data of 158 Chinese NSCLC patients, we analyzed the HRD scores of mutations in homologous recombination repair (HRR) genes and dissected the correlation between HRD state and programmed death-ligand 1 (PD-L1) expression. Alterations in HRR genes were observed in 8.9% of the patients, with ATM and BRCA2 being the most commonly affected genes. HRD-high (HRD-H) status was significantly associated with advanced disease stage (≥III) and lung squamous cell carcinoma (LUSC). Transcriptomic analysis revealed distinct gene expression profiles between HRD-H and HRD-low (HRD-L) subgroups, with HRD-H tumors exhibiting predominantly downregulated genes. While EGFR mutations occurred at similar frequencies across HRD status, TP53 mutations were significantly enriched in HRD-H cases. HRD-H status correlated with higher PD-L1 positivity in NSCLC overall, but not within the lung adenocarcinoma (LUAD) subgroup in our cohort. The Cancer genome atlas analysis showed higher PD-L1 protein expression in HRD-H LUAD, but not in LUSC. Kyoto Encyclopedia of Genes and Genomes analysis identified enrichment of complement and coagulation cascades, ABC transporters, and bile secretion pathways in HRD-H tumors, suggesting links to immune evasion and drug resistance. This study elucidates the genomic landscape of HRD in Chinese NSCLC patients and provides insights into its potential clinical utility for therapeutic targeting. Our findings suggest that integrated HRD scoring may guide the application of PARP inhibitors and immunotherapy in specific NSCLC patient subgroups. Further prospective clinical studies are needed to validate the predictive value of HRD scoring in NSCLC treatment and to optimize patient selection strategies.

- Zhao Z, Du L, Wang L, Wang Y, Yang Y, Dong H. Preferred lung cancer screening modalities in China: A discrete choice experiment. Cancers (Basel). 2021;13(23):6110. doi: 10.3390/cancers13236110
- Yang J, Hao R, Zhang Y, Deng H, Teng W, Wang Z. Construction of circRNA-miRNA-mRNA network and identification of novel potential biomarkers for non-small cell lung cancer. Cancer Cell Int. 2021;21(1):611. doi: 10.1186/s12935-021-02278-z
- Moreno-Rubio J, Ponce S, Álvarez R, et al. Clinical-pathological and molecular characterization of long-term survivors with advanced non-small cell lung cancer. Cancer Biol Med. 2020;17(2):444-457. doi: 10.20892/j.issn.2095-3941.2019.0363
- Khaddour K, Felipe Fernandez M, Khabibov M, et al. The prognostic and therapeutic potential of DNA damage repair pathway alterations and homologous recombination deficiency in lung cancer. Cancers (Basel). 2022;14(21):5305. doi: 10.3390/cancers14215305
- Li Z, Su W, Bai B, et al. Single-cell sequencing for lung cancer research: Progress and prospects. Eur J Med Oncol. 2025:6883. doi: 10.36922/ejmo.6883
- Karacin C, Eren T, Imamoglu GI, et al. The relationship between primary tumor localization and driver mutation in lung cancer. Eur J Med Oncol. 2020;4(3):215-218. doi: 10.14744/ejmo.2020.13543
- Bittoni M, Yang JC, Shih JY, et al. Real-world insights into patients with advanced NSCLC and MET alterations. Lung Cancer. 2021;159:96-106. doi: 10.1016/j.lungcan.2021.06.015
- Huang Q, Li F, Hu H, et al. Loss of TSC1/TSC2 sensitizes immune checkpoint blockade in non-small cell lung cancer. Sci Adv. 2022;8(5):eabi9533. doi: 10.1126/sciadv.abi9533
- Matsuzaki K, Kondo S, Ishikawa T, Shinohara A. Human RAD51 paralogue SWSAP1 fosters RAD51 filament by regulating the anti-recombinase FIGNL1 AAA+ ATPase. Nat Commun. 2019;10(1):1407. doi: 10.1038/s41467-019-09190-1
- Bukhari AB, Lewis CW, Pearce JJ, Luong D, Chan GK, Gamper AM. Inhibiting Wee1 and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis. J Clin Invest. 2019;129(3):1329-1344. doi: 10.1172/JCI122622
- Turdo A, Gaggianesi M, Di Franco S, et al. Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51. Oncogene. 2022;41(15):2196-2209. doi: 10.1038/s41388-022-02239-4
- Peng G, Chun-Jen Lin C, Mo W, et al. Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun. 2014;5:3361. doi: 10.1038/ncomms4361
- Pratz KW, Rudek MA, Gojo I, et al. A phase I study of topotecan, carboplatin and the PARP inhibitor veliparib in acute leukemias, aggressive myeloproliferative neoplasms, and chronic myelomonocytic leukemia. Clin Cancer Res. 2017;23(4):899-907. doi: 10.1158/1078-0432.CCR-16-1274
- Conrad LB, Lin KY, Nandu T, Gibson BA, Lea JS, Kraus WL. ADP-ribosylation levels and patterns correlate with gene expression and clinical outcomes in ovarian cancers. Mol Cancer Ther. 2020;19(1):282-291. doi: 10.1158/1535-7163.MCT-19-0569
- Jia Z, Liu Y, Qu S, et al. Evaluative methodology for HRD testing: Development of standard tools for consistency assessment. Genomics Proteomics Bioinform. 2025. doi: 10.1093/gpbjnl/qzaf017
- Makvandi M, Pantel A, Schwartz L, et al. A PET imaging agent for evaluating PARP-1 expression in ovarian cancer. J Clin Invest. 2018;128(5):2116-2126. doi: 10.1172/JCI97992
- Hahnen E, Lederer B, Hauke J, et al. Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer: Secondary analysis of the geparsixto randomized clinical trial. JAMA Oncol. 2017;3(10):1378-1385. doi: 10.1001/jamaoncol.2017.1007
- Shang X, Qi K, Liu X, et al. Signatures associated with homologous recombination deficiency and immune regulation to improve clinical outcomes in patients with lung adenocarcinoma. Front Oncol. 2022;12:854999. doi: 10.3389/fonc.2022.854999
- Su R, Liu Y, Wu X, Xiang J, Xi X. Dynamically accumulating homologous recombination deficiency score served as an important prognosis factor in high-grade serous ovarian cancer. Front Mol Biosci. 2021;8:762741. doi: 10.3389/fmolb.2021.762741
- Qing T, Wang X, Jun T, Ding L, Pusztai L, Huang KL. Genomic determinants of homologous recombination deficiency across human cancers. Cancers (Basel). 2021;13(18):4572. doi: 10.3390/cancers13184572
- Bever KM, Le DT. DNA repair defects and implications for immunotherapy. J Clin Invest. 2018;128(10):4236-4242. doi: 10.1172/JCI122010
- Ray-Coquard I, Leary A, Pignata S, et al. Olaparib plus bevacizumab first-line maintenance in ovarian cancer: Final overall survival results from the PAOLA-1/ENGOT-ov25 trial. Ann Oncol. 2023;34(8):681-692. doi: 10.1016/j.annonc.2023.05.005
- Yang C, Zhang Z, Tang X, et al. Pan-cancer analysis reveals homologous recombination deficiency score as a predictive marker for immunotherapy responders. Hum Cell. 2022;35(1):199-213. doi: 10.1007/s13577-021-00630-z
- Cosgrove N, Varešlija D, Keelan S, et al. Mapping molecular subtype specific alterations in breast cancer brain metastases identifies clinically relevant vulnerabilities. Nat Commun. 2022;13(1):514. doi: 10.1038/s41467-022-27987-5
- Marquard AM, Eklund AC, Joshi T, et al. Pan-cancer analysis of genomic scar signatures associated with homologous recombination deficiency suggests novel indications for existing cancer drugs. Biomark Res. 2015;3:9. doi: 10.1186/s40364-015-0033-4
- Rempel E, Kluck K, Beck S, et al. Pan-cancer analysis of genomic scar patterns caused by homologous repair deficiency (HRD). NPJ Precis Oncol. 2022;6(1):36. doi: 10.1038/s41698-022-00276-6
- Takamatsu S, Brown JB, Yamaguchi K, et al. Utility of homologous recombination deficiency biomarkers across cancer types. JCO Precis Oncol. 2022;6:e2200085. doi: 10.1200/PO.22.00085
- Hodgson D, Lai Z, Dearden S, et al. Analysis of mutation status and homologous recombination deficiency in tumors of patients with germline BRCA1 or BRCA2 mutations and metastatic breast cancer: OlympiAD. Ann Oncol. 2021;32(12):1582-1589. doi: 10.1016/j.annonc.2021.08.2154
- Zhou Z, Ding Z, Yuan J, et al. Homologous recombination deficiency (HRD) can predict the therapeutic outcomes of immuno-neoadjuvant therapy in NSCLC patients. J Hematol Oncol. 2022;15(1):62. doi: 10.1186/s13045-022-01283-7
- González-Martín A, Pothuri B, Vergote I, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2019;381(25):2391-2402. doi: 10.1056/NEJMoa1910962
- Telli ML, Timms KM, Reid J, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22(15):3764-3773. doi: 10.1158/1078-0432.CCR-15-2477
- Feng J, Lan Y, Liu F, et al. Combination of genomic instability score and TP53 status for prognosis prediction in lung adenocarcinoma. NPJ Precis Oncol. 2023;7(1):110. doi: 10.1038/s41698-023-00465-x
- Moretto R, Elliott A, Zhang J, et al. Homologous recombination deficiency alterations in colorectal cancer: Clinical, molecular, and prognostic implications. J Natl Cancer Inst. 2022;114(2):271-279. doi: 10.1093/jnci/djab169
- Khan R, Pari B, Puszynski K. Comprehensive bioinformatic investigation of TP53 dysregulation in diverse cancerlandscapes. Genes (Basel). 2024;15(5):577. doi: 10.3390/genes15050577
- Tsilingiri K, Chalari A, Christopoulou G, et al. Genomic scarring score predicts the response to PARP inhibitors in non-small cell lung cancer. NPJ Precis Oncol. 2024;8(1):291. doi: 10.1038/s41698-024-00777-6
- Wang Y, Ma Y, He L, et al. Clinical and molecular significance of homologous recombination deficiency positive non-small cell lung cancer in Chinese population: An integrated genomic and transcriptional analysis. Chin J Cancer Res. 2024;36(3):282-297. doi: 10.21147/j.issn.1000-9604.2024.03.05
- Bie F, Tian H, Sun N, et al. Comprehensive analysis of PD-L1 expression, tumor-infiltrating lymphocytes, and tumor microenvironment in LUAD: Differences between Asians and Caucasians. Clin Epigenetics. 2021;13(1):229. doi: 10.1186/s13148-021-01221-3
- Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: The multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal. 2025;23(1):171. doi: 10.1186/s12964-025-02169-0
- Paz-Ares L, Ciuleanu TE, Cobo M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial [published correction appears in Lancet Oncol. 2021;22(3):e92. doi: 10.1016/S1470-2045(20)30641-0
- Domchek SM, Postel-Vinay S, Im SA, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): An open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 2020;21(9):1155-1164. doi: 10.1016/S1470-2045(20)30324-7