EpCAM-targeting cancer immunotherapies: Evidence from clinical studies and the way forward
![](https://article.accscience.com/imageFile/by.png)
Overexpressed cell-surface receptors play a crucial role as biomarkers in immunodiagnostics and immunotherapy. Epithelial cell adhesion molecule (EpCAM) is a 40 kDa cell-membrane glycoprotein associated with cell differentiation, survival, migration, and proliferation. The structure, biological functions, and role of EpCAM in tumorigenesis have been extensively studied, including its involvement in metastasis, tumor cellular signaling, and pro-proliferating pathways. It is differentially overexpressed on the surface of several tumor types, with substantial evidence suggesting a positive correlation with poor disease prognosis and overall survival. Consequently, it has emerged as a significant target for immunotherapy development, with some of them already entering clinical evaluation and one having been approved by the U.S. Food and Drug Administration to date. Pre-clinical and clinical studies evaluating anti-EpCAM immunotherapies have reported diverse outcomes necessitating critical assessment in considering future therapy development. EpCAM-targeting immunotherapies including monoclonal antibodies, adoptive cell transfer therapy, immunocytokines, recombinant immunotoxin, and bispecific T-cell engagers have been studied as monotherapy or in combination with other treatments resulting in improved outcomes. Depending on disease status, EpCAM-targeting therapies are studied in adjuvant and neoadjuvant settings by integrating the clinical features of patients and treatment intent. However, the wide range of adverse events reported in various unsuccessful clinical studies has implications for future clinical trial designs, patient stratification, and endpoint criteria measures. This review examines the efficacy and toxicity profiles of anti-EpCAM immunotherapeutic approaches that have undergone clinical investigations for the treatment of antigen-positive malignancies and provides perspectives to guide future research and development strategies toward precision medicine.
- Satofuka H, Wang Y, Yamazaki K, et al. Characterization of human anti - EpCAM antibodies for developing an antibody - drug conjugate. Sci Rep. 2023;13:4225. doi: 10.1038/s41598-023-31263-x
- Pavšič M, Gunčar G, Djinovi-Carugo K, Lenarčič B. Crystal structure and its bearing towards an understanding of key biological functions of EpCAM. Nat Commun. 2014;5:4764. doi: 10.1038/ncomms5764
- Mitra M, Kandalam M, Verma RS, Umamaheswari K. Genome-wide changes accompanying the knockdown of Ep-CAM in retinoblastoma. Mol Vis. 2010;16:828-842.
- Nagao K, Zhu J, Heneghan MB, et al. Abnormal placental development and early embryonic lethality in EpCAM-Null mice. PLoS One. 2009;4:e8543. doi: 10.1371/journal.pone.0008543
- Imrich S, Hachmeister M, Gires O. EpCAM and its potential role in tumor-initiating cells. Cell Adh Migr. 2012;6:30-38. doi: 10.4161/cam.18953
- Schnell U, Kuipers J, Giepmans BN. EpCAM proteolysis: New fragments with distinct functions? Biosci Rep. 2013;33:321-332. doi: 10.1042/BSR20120128
- Keller L, Werner S, Pantel K. Biology and clinical relevance of EpCAM. Cell Stress. 2019;3:165-180. doi: 10.15698/cst2019.06.188
- Lei Z, Liu W, Nie Y, Yang Y, Chen G, Huang L. EpCAM is essential to maintaining the immune homeostasis of intestines via keeping the expression of pIgR in the intestinal epithelium of mice. Front Immunol. 2022;13:1-15. doi: 10.3389/fimmu.2022.843378
- Siddiqui H, Rawal P, Bihari C, Arora N, Kaur S. Vascular endothelial growth factor promotes proliferation of epithelial cell adhesion molecule-positive cells in nonalcoholic steatohepatitis. J Clin Exp Hepatol. 2020;10:275-283. doi: 10.1016/j.jceh.2019.11.011
- Schwartzberg LS. Clinical experience with edrecolomab: A monoclonal antibody therapy for colorectal carcinoma. Crit Rev Oncol Hematol. 2001;40:17-24. doi: 10.1016/S1040-8428(01)00131-7
- Punt CJ, Nagy A, Douillard JY, et al. Edrecolomab alone or in combination with fluorouracil and folinic acid in the adjuvant treatment of stage III colon cancer: A randomised study. Lancet. 2002;360:671-677. doi: 10.1016/S0140-6736(02)09836-7
- Oberneder R, Weckermann D, Ebner B, et al. A phase I study with adecatumumab, a human antibody directed against epithelial cell adhesion molecule, in hormone refractory prostate cancer patients. Eur J Cancer. 2006;42:2530-2538. doi: 10.1016/j.ejca.2006.05.029
- Autio KA, Boni V, Humphrey RW, Naing A. Probody therapeutics: An emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin Cancer Res. 2020;26:984-989. doi: 10.1158/1078-0432.CCR-19-1457
- Zheng X, Wu Y, Bi J, et al. The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cell Mol Immunol. 2022;19:192-209. doi: 10.1038/s41423-021-00786-6
- Neri D, Sondel PM. Immunocytokines for cancer treatment: Past, present and future immunocytokine formats Europe PMC Funders Group. Curr Opin Immunol. 2016;40:96-102. doi: 10.1016/j.coi.2016.03.006.Immunocytokines
- Ko YJ, Bubley GJ, Weber R, et al. Safety, pharmacokinetics, and biological pharmacodynamics of the immunocytokine EMD 273066 (huKS-IL2). J Immunother. 2004;27:232-239. doi: 10.1097/00002371-200405000-00008
- Connor JP, Lewis NL. A phase 1b study of humanized KS-interleukin-2 (huKS-IL2) immunocytokine with cyclophosphamide in patients with EpCAM-positive advanced solid tumors. BMC Cancer. 2013;13:20.doi: 10.1186/1471-2407-13-20
- Nambiar I. Analysis of serious adverse event: Writing a narrative. Perspect Clin Res. 2018;9:103-106. doi: 10.4103/picr.PICR-52-18
- Alewine C, Hassan R, Pastan I. Advances in anticancer immunotoxin therapy. Oncologist. 2015;20:176-185. doi: 10.1634/theoncologist.2014-0358
- Di Paolo C, Willuda J, Kubetzko S, et al. A recombinant immunotoxin derived from a humanized epithelial cell adhesion molecule-specific single-chain antibody fragment has potent and selective antitumor activity. Clin Cancer Res. 2003;9:2837-2848.
- Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006;6:559-565. doi: 10.1038/nrc1891
- Kowalski M, Entwistle J, Cizeau J, et al. A phase i study of an intravesically administered immunotoxin targeting EpCAM for the treatment of nonmuscle-invasive bladder cancer in BCG-refractory and BCG-intolerant patients. Drug Des Devel Ther. 2010;4:313-320. doi: 10.2147/DDDT.S14071
- MacDonald GC, Rasamoelisolo M, Entwistle J, et al. A phase I clinical study of VB4-845: Weekly intratumoral administration of an anti-EpCAM recombinant fusion protein in patients with squamous cell carcinoma of the head and neck. Drug Des Devel Ther. 2009;2:105-114. doi: 10.2147/dddt.s3442
- Andersson Y, Engebraaten O, Juell S, et al. Phase I trial of EpCAM-targeting immunotoxin MOC31PE, alone and in combination with cyclosporin. Br J Cancer. 2015;113:1548-1555. doi: 10.1038/bjc.2015.380
- Andersson Y, Inderberg EM, Kvalheim G, et al. Immune stimulatory effect of anti-EpCAM immunotoxin-improved overall survival of metastatic colorectal cancer patients. Acta Oncol (Madr). 2020;59:404-409. doi: 10.1080/0284186X.2019.1704864
- Billmann Thorgersen E, Asvall J, Storhaug Frøysnes I, et al. Increased local inflammatory response to MOC31PE immunotoxin after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2021;28:5252-5262. doi: 10.1245/s10434-021-10022-0
- Hassan R, Alewine C, Pastan I. New life for immunotoxin cancer therapy. Clin Cancer Res. 2016;22:1055-1058. doi: 10.1158/1078-0432.CCR-15-1623
- Thorgersen EB, Asvall J, Frøysnes IS, et al. Increased local inflammatory response to MOC31PE immunotoxin after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2021;28:5252-5262. doi: 10.1245/s10434-021-10022-0
- Showalter A, Limaye A, Oyer JL, et al. Cytokines in immunogenic cell death: Applications for cancer immunotherapy. Cytokine. 2017;97:123-132. doi: 10.1016/j.cyto.2017.05.024
- Simão DC, Zarrabi KK, Mendes JL, et al. Bispecific T-Cell engagers therapies in solid tumors: Focusing on prostate cancer. Cancers (Basel). 2023;15:1412. doi: 10.3390/cancers15051412
- Heiss MM, Murawa P, Koralewski P, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127:2209-2221. doi: 10.1002/ijc.25423
- Sebastian M, Kiewe P, Schuette W, et al. Treatment of malignant pleural effusion with the trifunctional antibody catumaxomab (removab) (anti-EpCAM Â anti-CD3) results of a phase 1/2 study. J Immunother. 2009;32:195-202. doi: 10.1097/CJI.0b013e318195b5bb
- Jäger M, Schoberth A, Ruf P, et al. Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (Anti- EpCAM x anti-CD3). Cancer Res. 2012;72:24-32. doi: 10.1158/0008-5472.CAN-11-2235
- Burges A, Wimberger P, Kümper C, et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: A phase I/II study. Clin Cancer Res. 2007;13:3899-3905. doi: 10.1158/1078-0432.CCR-06-2769
- Seeber A, Martowicz A, Spizzo G, et al. Soluble EpCAM levels in ascites correlate with positive cytology and neutralize catumaxomab activity in vitro. BMC Cancer. 2015;15:372. doi: 10.1186/s12885-015-1371-1.
- Knödler M, Körfer J, Kunzmann V, et al. Randomised phase II trial to investigate catumaxomab (anti-EpCAM × anti-CD3) for treatment of peritoneal carcinomatosis in patients with gastric cancer. Br J Cancer. 2018;119:296-302. doi: 10.1038/s41416-018-0150-6
- Kebenko M, Goebeler ME, Wolf M, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology. 2018;7:e1450710. doi: 10.1080/2162402X.2018.1450710
- Bellone S, Black J, English DP, et al. Solitomab, an EpCAM/CD3 bispecific antibody construct (BiTE), is highly active against primary uterine serous papillary carcinoma cell lines in vitro. Am J Obstet Gynecol. 2016;214:99.e1-99.e8. doi: 10.1016/j.ajog.2015.08.011
- Li D, Guo X, Yang K, et al. EpCAM-targeting CAR-T cell immunotherapy is safe and efficacious for epithelial tumors. Sci Adv. 2023;9:eadg9721. doi: 10.1126/sciadv.adg9721
- Yu YD, Kim TJ. Chimeric antigen receptor-engineered T cell therapy for the management of patients with metastatic prostate cancer: A comprehensive review. Int J Mol Sci. 2021;22:640. doi: 10.3390/ijms22020640
- Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17:507-522. doi: 10.1038/nrg.2016.86
- Arrowsmith J, Miller P. Trial watch: Phase II and phase III attrition rates 2011-2012. Nat Rev Drug Discov. 2013;12:569. doi: 10.1038/nrd4090
- Mak IW, Evaniew N, Ghert M. Lost in translation: Animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114-118.
- Ryaboshapkina M, Hammar M. Tissue-specific genes as an underutilized resource in drug discovery. Sci Rep. 2019;9:7233. doi: 10.1038/s41598-019-43829-9
- Nguyen PA, Born DA, Deaton AM, Nioi P, Ward LD. Phenotypes associated with genes encoding drug targets are predictive of clinical trial side effects. Nat Commun. 2019;10:1579. doi: 10.1038/s41467-019-09407-3
- Sinkala M, Naran K, Ramamurthy D, et al. Machine learning and bioinformatic analyses link the cell surface receptor transcript levels to the drug response of breast cancer cells and drug off-target effects. PLoS One. 2024;19:e0296511. doi: 10.1371/journal.pone.0296511
- Wayne AS, Fitzgerald DJ, Kreitman RJ, Pastan I. Immunotoxins for leukemia. Blood. 2015;123:2470-2478. doi: 10.1182/blood-2014-01-492256.2470
- Morgan RN, Saleh ES, Farrag AH, Aboshanab MK. New insights on Pseudomonas aeruginosa exotoxin A-based immunotoxins in targeted cancer therapeutic delivery. Ther Deliv. 2023;14:31-60. doi: 10.4155/tde-2022-0055
- Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Ann Transl Med. 2016;4:261. doi: 10.21037/atm.2016.04.01
- Lv Y, Zhang H, Cui Z, et al. Gene delivery to breast cancer by incorporated EpCAM targeted DARPins into AAV2. BMC Cancer. 2023;23:1220. doi: 10.1186/s12885-023-11705-5
- Tavsan Z, Ayar Kayalı H. EpCAM-claudin-tetraspanin-modulated ovarian cancer progression and drug resistance. Cell Adh Migr. 2020;14:57-68. doi: 10.1080/19336918.2020.1732761
- Ni J, Cozzi P, Beretov J, et al. Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer progression and chemo-/radio-resistance in vitro and in vivo. BMC Cancer. 2017;18:2833-2833. doi: 10.1158/1538-7445.am2017-2833
- Mal A, Bukhari AB, Singh RK, et al. EpCAM-mediated cellular plasticity promotes radiation resistance and metastasis in breast cancer. Front Cell Dev Biol. 2021;8:597673. doi: 10.3389/fcell.2020.597673
- Hristodorov D, Amoury M, Mladenov R, et al. EpCAM-selective elimination of carcinoma cells by a novel MAP-based cytolytic fusion protein. Mol Cancer Ther. 2014;13:2194-2202. doi: 10.1158/1535-7163.MCT-13-0781
- Qu W, Meng B, Yu Y, Wang S. EpCAM antibody-conjugated mesoporous silica nanoparticles to enhance the anticancer efficacy of carboplatin in retinoblastoma. Mater Sci Eng C. 2017;76:646-651. doi: 10.1016/j.msec.2017.03.036
- Kapka-Skrzypczak L, Popek S, Sawicki K, et al. IL-6 prevents CXCL8-induced stimulation of EpCAM expression in ovarian cancer cells. Mol Med Rep. 2019;19:2317-2322. doi: 10.3892/mmr.2019.9890
- Zhang BL, Li D, Gong YL, et al. Preclinical evaluation of chimeric antigen receptor-modified T cells specific to epithelial cell adhesion molecule for treating colorectal cancer. Hum Gene Ther. 2019;30:402-412. doi: 10.1089/hum.2018.229
- Zhang Y, Xie X, Yeganeh PN, et al. Immunotherapy for breast cancer using EpCAM aptamer tumor-targeted gene knockdown. Proc Natl Acad Sci U S A. 2021;118: e2022830118. doi: 10.1073/pnas.2022830118
- Kouba P, Kohout P, Haddadi F, et al. Machine learning-guided protein engineering. ACS Catal. 2023;13:13863-13895. doi: 10.1021/acscatal.3c02743
- Guo L, Kong D, Liu J, et al. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol. 2023;12:1-27. doi: 10.1186/s40164-022-00363-1
- Patkulkar PA, Subbalakshmi AR, Jolly MK, Sinharay S. Mapping spatiotemporal heterogeneity in tumor profiles by integrating high-throughput imaging and omics analysis. ACS Omega. 2023;8:6126-6138. doi: 10.1021/acsomega.2c06659
- Shieh GS. Harnessing synthetic lethal interactions for personalized medicine. J Pers Med. 2022;12:98. doi: 10.3390/jpm12010098