AccScience Publishing / TD / Online First / DOI: 10.36922/td.2061
REVIEW

Volatile organic compounds: A promising new frontier for cancer screening

Alexandra Allard-Coutu1* Kevin Singh2 Dawn David3 Victoria Dobson1 Lily Dahmer4 Barbara Heller5
Show Less
1 Department of General Surgery, Division of Surgical Oncology, University of Ottawa, Ottawa, Ontario, Canada
2 Department of Medicine, Division of General Internal Medicine, University of Toronto, Toronto, Ontario, Canada
3 Department of General Surgery, University of Ottawa, Ottawa, Ontario, Canada
4 Department of Nursing, Hamilton General Hospital, Hamilton, Ontario, Canada
5 Department of General Surgery, Division of Surgery, McMaster University, Hamilton, Ontario, Canada
Tumor Discovery 2024, 3(2), 2061 https://doi.org/10.36922/td.2061
Submitted: 18 October 2023 | Accepted: 29 April 2024 | Published: 24 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The late onset of cancer symptoms can cause a significant delay in diagnosis, impacting patients’ prognosis and quality of life, thus prompting a need for alternative screening and detection methods. Neoplastic processes cause distinct and immediate changes to the body’s metabolism, creating unique patterns in the volatile organic compounds (VOCs) produced and released through exhaled breath. For this reason, VOC profiles have emerged as diagnostic indicators for several types of malignancies, facilitating early cancer detection. Both non-invasive and accessible, the analysis of breath VOCs for cancer screening and detection has gained recognition as a new frontier in cancer diagnostics. Using exhaled breath instead of gold-standard cancer detection and screening tools that are traditionally invasive and uncomfortable for the patient could be revolutionary in improving patient compliance. Further, compared to the gold-standard tools, breath testing is relatively inexpensive, and the method of analysis, storage, and transporting the samples is simplified. Several studies have demonstrated the accuracy of VOC analysis in detecting various types of cancer, including breast cancer, colon cancer, prostate cancer, gastric cancer, and melanoma. This article summarizes the evidence supporting VOC analysis for cancer screening and detection. It reviews the clinical utility, current limitations, and necessity for standardization across all VOC screening tools to ensure the standardization and reliability of measurements. The evidence supporting breath tests to detect cancer accurately is strong, demonstrating that VOC sampling improves patient outcomes and decreases the global burden of malignant conditions by detecting cancer earlier.

Keywords
Volatile organic compounds
Breath analysis
Cancer screening
Cancer diagnostics
Funding
None.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Hanna GB, Boshier PR, Markar SR, Romano A. Accuracy and methodologic challenges of volatile organic compound-based exhaled breath tests for cancer diagnosis: A systematic review and meta-analysis [published correction appears in JAMA Oncol. 2019 Jul 1;5(7):1070]. JAMA Oncol. 2019;5(1):e182815. doi: 10.1001/jamaoncol.2018.2815

 

  1. Gaude E, Nakhleh MK, Patassini S, et al. Targeted breath analysis: Exogenous volatile organic compounds (EVOC) as metabolic pathway-specific probes. J Breath Res. 2019;13(3):032001. doi: 10.1088/1752-7163/ab1789

 

  1. Nakhleh MK, Amal H, Jeries R, et al. Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano. 2017;11(1):112-125. doi: 10.1021/acsnano.6b04930

 

  1. Einoch Amor R, Nakhleh MK, Barash O, Haick H. Breath analysis of cancer in the present and the future. Eur Respir Rev. 2019;28(152):190002. doi: 10.1183/16000617.0002-2019

 

  1. Serasanambati M, Broza YY, Marmur A, Haick H. Profiling single cancer cells with volatolomics approach. iScience. 2019;11:178-188. doi: 10.1016/j.isci.2018.12.008

 

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-674. doi: 10.1016/j.cell.2011.02.013

 

  1. Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022;66:15-23. doi: 10.1016/j.breast.2022.08.010

 

  1. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends--an update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):16-27. doi: 10.1158/1055-9965.EPI-15-0578

 

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. doi: 10.3322/caac.21763

 

  1. Breast Cancer Surveillance Consortium, Funded by the National Cancer Institute; 2021. Available from: https:// breastscreening.cancer.gov [Last accessed on 2023 Jul 01].

 

  1. Tabár L, Dean PB, Chen TH, et al. The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening. Cancer. 2019;125(4):515-523. doi: 10.1002/cncr.31840

 

  1. Phillips M, Cataneo RN, Ditkoff BA, et al. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat. 2006;99(1):19-21. doi: 10.1007/s10549-006-9176-1

 

  1. Akinyemiju T, Ogunsina K, Sakhuja S, Ogbhodo V, Braithwaite D. Life-course socioeconomic status and breast and cervical cancer screening: Analysis of the WHO’s Study on Global Ageing and Adult Health (SAGE). BMJ Open. 2016;6(11):e012753. doi: 10.1136/bmjopen-2016-012753

 

  1. Chandak A, Nayar P, Lin G. Rural-urban disparities in access to breast cancer screening: A Spatial clustering analysis. J Rural Health. 2019;35(2):229-235. doi: 10.1111/jrh.12308

 

  1. O’Hara J, McPhee C, Dodson S, et al. Barriers to breast cancer screening among diverse cultural groups in Melbourne, Australia. Int J Environ Res Public Health. 2018;15(8):1677. doi: 10.3390/ijerph15081677

 

  1. Rim SH, Allaire BT, Ekwueme DU, et al. Cost-effectiveness of breast cancer screening in the National Breast and Cervical Cancer Early Detection Program. Cancer Causes Control. 2019;30(8):819-826. doi: 10.1007/s10552-019-01178-y

 

  1. Vahabi M, Lofters A, Kumar M, Glazier RH. Breast cancer screening disparities among immigrant women by world region of origin: A population-based study in Ontario, Canada. Cancer Med. 2016;5(7):1670-1686. doi: 10.1002/cam4.700

 

  1. Patterson SG, Bayer CW, Hendry RJ, et al. Breath analysis by mass spectrometry: A new tool for breast cancer detection? Am Surg. 2011;77(6):747-751. doi: 10.1177/0003134811077006

 

  1. Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. Volatile biomarkers in the breath of women with breast cancer. J Breath Res. 2010;4(2):026003. doi: 10.1088/1752-7155/4/2/026003

 

  1. Li J, Peng Y, Liu Y, et al. Investigation of potential breath biomarkers for the early diagnosis of breast cancer using gas chromatography-mass spectrometry. Clin Chim Acta. 2014;436:59-67. doi: 10.1016/j.cca.2014.04.030

 

  1. Yazdanpanah M, Luo X, Lau R, Greenberg M, Fisher LJ, Lehotay DC. Cytotoxic aldehydes as possible markers for childhood cancer. Free Radic Biol Med. 1997;23(6):870-878. doi: 10.1016/s0891-5849(97)00070-1

 

  1. Hamel E, Lin CM, Plowman J, Wang HK, Lee KH, Paull KD. Antitumor 2,3-dihydro-2-(aryl)-4(1H)-quinazolinone derivatives. Interactions with tubulin. Biochem Pharmacol. 1996;51(1):53-59. doi: 10.1016/0006-2952(95)02156-6

 

  1. Mukherjee S, Kumar V, Prasad AK, et al. Synthetic and biological activity evaluation studies on novel 1,3-diarylpropenones. Bioorg Med Chem. 2001;9(2):337-345. doi: 10.1016/s0968-0896(00)00249-2

 

  1. Phillips M, Altorki N, Austin JHM, et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin Chim Acta. 2008;393(2):76-84. doi: 10.1016/j.cca.2008.02.021

 

  1. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683-691. doi: 10.1136/gutjnl-2015-310912

 

  1. Siegel RL, Wagle NS, Cercek A, et al. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023;73(3):233-254. doi: 10.3322/caac.21772

 

  1. Dozois EJ, Boardman LA, Suwanthanma W, et al. Young-onset colorectal cancer in patients with no known genetic predisposition: Can we increase early recognition and improve outcome? Medicine (Baltimore). 2008;87(5):259-263. doi: 10.1097/MD.0b013e3181881354

 

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [published correction appears in CA Cancer J Clin. 2020;70(4):313]. CA Cancer J Clin. 2020;68(6):394-424. doi: 10.3322/caac.21492

 

  1. Song LL, Li YM. Current noninvasive tests for colorectal cancer screening: An overview of colorectal cancer screening tests. World J Gastrointest Oncol. 2016;8(11):793-800. doi: 10.4251/wjgo.v8.i11.793

 

  1. Shapiro JA, Bobo JK, Church TR, et al. A comparison of fecal immunochemical and high-sensitivity guaiac tests for colorectal cancer screening. Am J Gastroenterol. 2017;112(11):1728-1735. doi: 10.1038/ajg.2017.285

 

  1. Zauber AG, Knudsen AB, Carolyn R, et al. 178 Evaluating the benefits and harms of colorectal cancer screening strategies: A collaborative modeling approach to inform the US preventive services task force. Gastroenterology. 2016;150(4):S46-S46. doi: 10.1016/S0016-5085(16)30279-7

 

  1. Knudsen AB, Zauber AG, Rutter CM, et al. Estimation of benefits, burden, and harms of colorectal cancer screening strategies: Modeling study for the US preventive services task force. JAMA. 2016;315(23):2595-2609. doi: 10.1001/jama.2016.6828

 

  1. Adler A, Geiger S, Keil A, et al. Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany. BMC Gastroenterol. 2014;14:183. doi: 10.1186/1471-230X-14-183

 

  1. Rex DK, Boland CR, Dominitz JA, et al. Colorectal cancer screening: Recommendations for physicians and patients from the U.S. multi-society task force on colorectal cancer. Am J Gastroenterol. 2017;112(7):1016-1030. doi: 10.1038/ajg.2017.174

 

  1. Wang C, Ke C, Wang X, et al. Noninvasive detection of colorectal cancer by analysis of exhaled breath. Anal Bioanal Chem. 2014;406(19):4757-4763. doi: 10.1007/s00216-014-7865-x

 

  1. Altomare DF, Di Lena M, Porcelli F, et al. Effects of curative colorectal cancer surgery on exhaled volatile organic compounds and potential implications in clinical follow-up. Ann Surg. 2015;262(5):862-867. doi: 10.1097/SLA.0000000000001471

 

  1. Amal H, Leja M, Funka K, et al. Breath testing as potential colorectal cancer screening tool. Int J Cancer. 2016;138(1):229-236. doi: 10.1002/ijc.29701

 

  1. Catalona WJ, Southwick PC, Slawin KM, et al. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging. Urology. 2000;56(2):255-260. doi: 10.1016/s0090-4295(00)00637-3

 

  1. Wolf AMD, Wender RC, Etzioni RB, et al. American Cancer Society guideline for the early detection of prostate cancer: Update 2010. CA Cancer J Clin. 2010;60(2):70-98. doi: 10.3322/caac.20066

 

  1. Mason RJ, Marzouk K, Finelli A, et al. UPDATE - 2022 Canadian Urological Association recommendations on prostate cancer screening and early diagnosis Endorsement of the 2021 Cancer Care Ontario guidelines on prostate multiparametric magnetic resonance imaging. Can Urol Assoc J. 2022;16(4):E184-E196. doi: 10.5489/cuaj.7851

 

  1. Eastham JA, Auffenberg GB, Barocas DA, et al. Clinically localized prostate cancer: AUA/ASTRO guideline, Part II: Principles of active surveillance, principles of surgery, and follow-up. J Urol. 2022;208(1):19-25. doi: 10.1097/JU.0000000000002758

 

  1. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter [published correction appears in N Engl J Med. 2004;351(14):1470]. N Engl J Med. 2004;350(22):2239-2246. doi: 10.1056/NEJMoa031918

 

  1. Naughton CK, Miller DC, Mager DE, Ornstein DK, Catalona WJ. A prospective randomized trial comparing 6 versus 12 prostate biopsy cores: Impact on cancer detection. J Urol. 2000;164(2):388-392.

 

  1. Khalid T, Aggio R, White P, et al. Urinary volatile organic compounds for the detection of prostate cancer. PLoS One. 2015;10(11):e0143283. doi: 10.1371/journal.pone.0143283

 

  1. Andriole GL, Bostwick DG, Brawley OW, et al. Effect of dutasteride on the risk of prostate cancer. N Engl J Med. 2020;362(13):1192-1202. doi: 10.1056/NEJMoa0908127

 

  1. Schröder FH, Roobol MJ. Dutasteride and prostate cancer. N Engl J Med. 2010;363(8):793-795. doi: 10.1056/NEJMc100549

 

  1. Liu Q, Fan Y, Zeng S, et al. Volatile organic compounds for early detection of prostate cancer from urine. Heliyon. 2023;9(6):e16686. doi: 10.1016/j.heliyon.2023.e16686

 

  1. Gao Q, Su X, Annabi MH, et al. Application of urinary volatile organic compounds (VOCs) for the diagnosis of prostate cancer. Clin Genitourin Cancer. 2019;17(3):183-190. doi: 10.1016/j.clgc.2019.02.003

 

  1. Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010;103(4):542-551. doi: 10.1038/sj.bjc.6605810

 

  1. Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression [published correction appears in Nature. 2013 Jul 25;499(7459):504]. Nature. 2009;457(7231):910-914. doi: 10.1038/nature07762

 

  1. Ahmed Laskar A, Younus H. Aldehyde toxicity and metabolism: The role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev. 2019;51(1):42-64. doi: 10.1080/03602532.2018.1555587

 

  1. Jackson B, Brocker C, Thompson DC, et al. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum Genomics. 2011;5(4):283-303. doi: 10.1186/1479-7364-5-4-283

 

  1. Lee S, Kim M, Ahn BJ, Jang Y. Odorant-responsive biological receptors and electronic noses for volatile organic compounds with aldehyde for human health and diseases: A perspective review. J Hazard Mater. 2023;455:131555. doi: 10.1016/j.jhazmat.2023.131555

 

  1. Janfaza S, Khorsand B, Nikkhah M, Zahiri J. Digging deeper into volatile organic compounds associated with cancer. Biol Methods Protoc. 2019;4(1):bpz014. doi: 10.1093/biomethods/bpz014

 

  1. Leemans M, Bauër P, Cuzuel V, Audureau E, Fromantin I. Volatile organic compounds analysis as a potential novel screening tool for breast cancer: A systematic review. Biomark Insights. 2022;17:11772719221100709. doi: 10.1177/11772719221100709

 

  1. Cancer Today, n.d. Available from: https://gco.iarc.fr/today/home [Last accessed on 2023 Oct 09].

 

  1. Yao K, Uedo N, Kamada T, et al. Guidelines for endoscopic diagnosis of early gastric cancer. Dig Endosc. 2020;32(5):663-698. doi: 10.1111/den.13684

 

  1. Choi KS, Jun JK, Park EC, et al. Performance of different gastric cancer screening methods in Korea: A population-based study. PLoS One. 2012;7(11):e50041. doi: 10.1371/journal.pone.0050041

 

  1. Hauser H, Pack GT. The roentgen diagnosis of malignant tumors of the stomach. Radiology. 1936;26(2):221-233. doi: 10.1148/26.2.221

 

  1. Dooley CP, Larson AW, Stace NH, et al. Double-contrast barium meal and upper gastrointestinal endoscopy. A comparative study. Ann Intern Med. 1984;101(4):538-545. doi: 10.7326/0003-4819-101-4-538

 

  1. Low VH, Levine MS, Rubesin SE, Laufer I, Herlinger H. Diagnosis of gastric carcinoma: Sensitivity of double-contrast barium studies. AJR Am J Roentgenol. 1994;162(2):329-334. doi: 10.2214/ajr.162.2.8310920

 

  1. Portnoy LM. Radiologic Diagnosis of Gastric Cancer: A New Outlook. Berlin: Springer; 2006. Available from: https://ebookcentral.proquest.com/lib/ottawa/detail. action?docID=304463

 

  1. Gelfand DW, Hachiya J. The double-contrast examination of the stomach using gas-producing granules and tablets. Radiology. 1969;93(6):1381-1382. doi: 10.1148/93.6.1381

 

  1. National Health Commission of The People’s Republic of China. National guidelines for diagnosis and treatment of gastric cancer 2022 in China (English version). Chin J Cancer Res. 2022;34(3):207-237. doi: 10.21147/j.issn.1000-9604.2022.03.04

 

  1. Kubota H, Kotoh T, Masunaga R, et al. Impact of screening survey of gastric cancer on clinicopathological features and survival: Retrospective study at a single institution. Surgery. 2000;128(1):41-47. doi: 10.1067/msy.2000.106812

 

  1. Mizoue T, Yoshimura T, Tokui N, et al. Prospective study of screening for stomach cancer in Japan. Int J Cancer. 2003;106(1):103-107. doi: 10.1002/ijc.11183

 

  1. Hamashima C, Saito H, Nakayama T, Nakayama T, Sobue T. The standardized development method of the Japanese guidelines for cancer screening. Jpn J Clin Oncol. 2008;38(4):288-295. doi: 10.1093/jjco/hyn016

 

  1. Polk DB, Peek RM Jr. Helicobacter pylori: Gastric cancer and beyond [published correction appears in Nat Rev Cancer. 2010;10(8):593]. Nat Rev Cancer. 2010;10(6):403-414. doi: 10.1038/nrc2857

 

  1. Tong H, Wang Y, Li Y, et al. Volatile organic metabolites identify patients with gastric carcinoma, gastric ulcer, or gastritis and control patients. Cancer Cell Int. 2017;17:108. doi: 10.1186/s12935-017-0475-x

 

  1. Pham YL, Beauchamp J. Breath biomarkers in diagnostic applications. Molecules. 2021;26(18):5514. doi: 10.3390/molecules26185514

 

  1. Kumar S, Huang J, Abbassi-Ghadi N, Španěl P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal Chem. 2013;85(12):6121-6128. doi: 10.1021/ac4010309

 

  1. Kumar S, Huang J, Abbassi-Ghadi N, et al. Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma. Ann Surg. 2015;262(6):981-990. doi: 10.1097/SLA.0000000000001101

 

  1. Xiang L, Wu S, Hua Q, Bao C, Liu H. Volatile organic compounds in human exhaled breath to diagnose gastrointestinal cancer: A meta-analysis. Front Oncol. 2021;11:606915. doi: 10.3389/fonc.2021.606915

 

  1. Durán-Acevedo CM, Jaimes-Mogollón AL, Gualdrón- Guerrero OE, et al. Exhaled breath analysis for gastric cancer diagnosis in Colombian patients. Oncotarget. 2018;9(48):28805-28817. doi: 10.18632/oncotarget.25331

 

  1. Jung YJ, Seo HS, Kim JH, Song KY, Park CH, Lee HH. Advanced diagnostic technology of volatile organic compounds real time analysis analysis from exhaled breath of gastric cancer patiens using proton-transfer-reaction time-of-flight mass spectrometry. Front Oncol. 2021;11:560591. doi: 10.3389/fonc.2021.560591

 

  1. Yang H, Xiang C, Mou Y, et al. The investigation of volatile organic compounds in diagnosing (early) esophageal squamous cell carcinoma and gastric adenocarcinoma. J Cancer Res Clin Oncol. 2023;149(10):7029-7041. doi: 10.1007/s00432-023-04595-4

 

  1. Green AC, Baade P, Coory M, Aitken JF, Smithers M. Population-based 20-year survival among people diagnosed with thin melanomas in Queensland, Australia. J Clin Oncol. 2012;30(13):1462-1467. doi: 10.1200/JCO.2011.38.8561

 

  1. Brady MS, Oliveria SA, Christos PJ, et al. Patterns of detection in patients with cutaneous melanoma. Cancer. 2000;89(2):342-347. doi: 10.1002/1097-0142

 

  1. Carli P, De Giorgi V, Palli D, et al. Self-detected cutaneous melanomas in Italian patients. Clin Exp Dermatol. 2004;29(6):593-596. doi: 10.1111/j.1365-2230.2004.01628.x

 

  1. Gachon J, Beaulieu P, Sei JF, et al. First prospective study of the recognition process of melanoma in dermatological practice. Arch Dermatol. 2005;141(4):434-438. doi: 10.1001/archderm.141.4.434

 

  1. Dinnes J, Deeks JJ, Grainge MJ, et al. Visual inspection for diagnosing cutaneous melanoma in adults. Cochrane Database Syst Rev. 2018;12(12):CD013194. doi: 10.1002/14651858.CD013194

 

  1. Kwak J, Gallagher M, Ozdener MH, et al. Volatile biomarkers from human melanoma cells. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;931:90-96. doi: 10.1016/j.jchromb.2013.05.007

 

  1. Santonico M, D’Amico A, Di Natale C. Investigations on Odor-Pathology Relationship in Humans, Thesis, Department of Electronic Engineering, University of Rome; 2007.

 

  1. Abaffy T, Möller MG, Riemer DD, Milikowski C, DeFazio RA. Comparative analysis of volatile metabolomics signals from melanoma and benign skin: A pilot study. Metabolomics. 2013;9:998-1008. doi: 10.1007/s11306-013-0523-z

 

  1. Lawrence W Jr., Donegan WL, Natarajan N, Mettlin C, Beart R, Winchester D. Adult soft tissue sarcomas. A pattern of care survey of the American College of Surgeons. Ann Surg. 1987;205(4):349-359. doi: 10.1097/00000658-198704000-00003

 

  1. Alcindor T, Dumitra S, Albritton K, et al. Disparities in cancer care: The example of sarcoma-in search of solutions for a global issue. Am Soc Clin Oncol Educ Book. 2021;41:405-411. doi: 10.1200/EDBK_32046

 

  1. von Mehren M, Randall RL, Benjamin RS, et al. Soft tissue sarcoma, version 2.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16(5):536-563. doi: 10.6004/jnccn.2018.0025

 

  1. Rupani A, Hallin M, Jones R.L, et al. Diagnostic differences in expert second-opinion consultation cases at a tertiary sarcoma center. Sarcoma. 2020;2020:9810170. doi: 10.1155/2020/9810170

 

  1. Soomers VLMN, Husson O, Desar IME, et al. Patient and diagnostic intervals of survivors of sarcoma: Results from the SURVSARC study. Cancer. 2020;126(24):5283-5292. doi: 10.1002/cncr.33181

 

  1. Chotel F, Unnithan A, Chandrasekar CR, Parot R, Jeys L, Grimer RJ. Variability in the presentation of synovial sarcoma in children: A plea for greater awareness. J Bone Joint Surg Br. 2008;90(8):1090-1096. doi: 10.1302/0301-620X.90B8.19815

 

  1. Zagars GK, Ballo MT, Pisters PWT, et al. Prognostic factors for patients with localized soft-tissue sarcoma treated with conservation surgery and radiation therapy: An analysis of 1225 patients. Cancer. 2003;97(10):2530-2543. doi: 10.1002/cncr.11365

 

  1. Acem I, van Praag VM, Mostert CQ, et al. Noninvasive detection of soft tissue sarcoma using volatile organic compounds in exhaled breath: A pilot study. Future Oncol. 2023;19(10):697-704. doi: 10.2217/fon-2022-1122

 

  1. Wang XR, Cassells J, Berna AZ. Stability control for breath analysis using GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;1097-1098:27-34. doi: 10.1016/j.jchromb.2018.08.024

 

  1. Mathew TL, Pownraj P, Abdulla S, Pullithadathil B. Technologies for clinical diagnosis using expired human breath analysis. Diagnostics (Basel). 2015;5(1):27-60. doi: 10.3390/diagnostics5010027

 

  1. Steenhuis EGM, Schoenaker IJH, de Groot JWB, et al. Feasibility of volatile organic compound in breath analysis in the follow-up of colorectal cancer: A pilot study. Eur J Surg Oncol. 2020;46(11):2068-2073. doi: 10.1016/j.ejso.2020.07.028

 

  1. Fielding D, Davis M, Brown M, et al. VOC breath testing in squamous cell carcinoma (SCC) of lung and larynx shows distinct profiles each of which relate to tumour burden. J Thorac Oncol. 2015;10(9):S736-S736.

 

  1. Markar SR, Chin ST, Romano A, et al. Breath volatile organic compound profiling of colorectal cancer using selected ion flow-tube mass spectrometry. Ann Surg. 2017;269:903-910. doi: 10.1097/SLA.0000000000002539

 

  1. American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005;171(8):912-930. doi: 10.1164/rccm.200406-710ST

 

  1. Nidheesh VR, Mohapatra AK, Unnikrishnan VK, et al. Breath analysis for the screening and diagnosis of diseases. Appl Spectrosc Rev. 2020;56(8-10):702-732. doi: 10.1080/05704928.2020.1848857

 

  1. Boots AW, Bos LD, van der Schee MP, et al. Exhaled molecular fingerprinting in diagnosis and monitoring: Validating volatile promises. Trends Mol Med. 2015;21(10):633-644. doi: 10.1016/j.molmed.2015.08.001

 

  1. Angioli R, Santonico M, Pennazza G, et al. Use of sensor array analysis to detect ovarian cancer through breath, urine, and blood: A case-control study. Diagnostics (Basel). 2024;14:561. doi: 10.3390/diagnostics14050561

 

  1. Rodriguez-Miguelez JM, Moreno-Ortega AJ, Sanz- Melde A, et al. Inflammation-related biomarkers in exhaled breath condensate for breast cancer diagnosis. Biosensors. 2020;10(5):46.

 

  1. Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014;43(5):1423-1449. doi: 10.1039/c3cs60329f

 

  1. Dragonieri S, Annema JT, Schot R, et al. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer. 2009;64(2):166-170. doi: 10.1016/j.lungcan.2008.08.008

 

  1. Ge P, Luo Y, Chen H, et al. Application of mass spectrometry in pancreatic cancer translational research. Front Oncol. 2021;11:667427. doi: 10.3389/fonc.2021.667427

 

  1. Raspagliesi F, Bogani G, Benedetti S, Grassi S, Ferla S, Buratti S. Detection of ovarian cancer through exhaled breath by electronic nose: A prospective study. Cancers (Basel). 2020;12(9):2408. doi: 10.3390/cancers12092408

 

  1. Song C, Guo S, Jin S, Chen L, Jung YM. Biomarkers determination based on surface-enhanced raman scattering. Chemosensors. 2020;8(4):118. doi: 10.3390/chemosensors8040118

 

  1. Chang JE, Lee DS, Ban SW, et al. Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system. Sensors Actuators B Chem. 2018;255:800-807. doi: 10.1016/j.snb

 

  1. Kumar S, Chauhan D, Renugopalakrishnan V, Malhotra BD. Biofunctionalized nanodot zirconia-based efficient biosensing platform for noninvasive oral cancer detection. MRS Communications. 2020;10:652-659. doi: 10.1557/mrc.2020.75

 

  1. Mazzone PJ. Exhaled breath volatile organic compound biomarkers in lung cancer. J Breath Res. 2012;6(2):027106. doi: 10.1088/1752-7155/6/2/027106

 

  1. Grocki P, Woollam M, Wang L, et al. Chemometric analysis of urinary volatile organic compounds to monitor the efficacy of pitavastatin treatments on mammary tumor progression over time. Molecules. 2022;27(13):4277. doi: 10.3390/molecules27134277

 

  1. van Vorstenbosch R, Cheng HR, Jonkers D, et al. Systematic review: Contribution of the gut microbiome to the volatile metabolic fingerprint of colorectal neoplasia. Metabolites. 2022;13(1):55. doi: 10.3390/metabo13010055

 

  1. Peng X, Liu M, Dai W, et al. Identification and diagnostic value of characteristic volatile organic compounds in exhaled breath of patients with early stage lung cancer. Chin J Clin Thorac Cardio Surg. 2020; 12:1429-1435.

 

  1. Keenan JI, Frizelle FA. Biomarkers to detect early-stage colorectal cancer. Biomedicines. 2022;10(2):255. doi: 10.3390/biomedicines10020255

 

  1. Pathak AK, Swargiary K, Kongsawang N, Jitpratak P, Ajchareeyasoontorn N, Udomkittivorakul J et al. Recent advances in sensing materials targeting clinical volatile organic compound (VOC) biomarkers: a review. Biosensors. 2023;13(1):114.

 

  1. Saorin A, Di Gregorio E, Miolo G, Steffan A, Corona G. Emerging role of metabolomics in ovarian cancer diagnosis. Metabolites. 2020;10(10):419. doi: 10.3390/metabo10100419

 

  1. Heinrich-Ramm R, Jakubowski M, Heinzow B, et al. Biological monitoring for exposure to volatile organic compounds (VOCs) (IUPAC Recommendations 2000). Pure Appl Chem. 2020;72(3):385-436. doi: 10.1351/pac200072030385

 

  1. St Helen G, Liakoni E, Nardone N, Addo N, Jacob P 3rd, Benowitz NL. Comparison of systemic exposure to toxic and/or carcinogenic volatile organic compounds (VOC) during vaping, smoking, and abstention. Cancer Prev Res (Phila). 2020;13(2):153-162. doi: 10.1158/1940-6207.CAPR-19-0356

 

  1. Tang Z, Liu Y, Duan Y. Breath analysis: technical developments and challenges in the monitoring of human exposure to volatile organic compounds. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1002:285-299. doi: 10.1016/j.jchromb.2015.08.041

 

  1. Schmidt K, Podmore I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J Biomark. 2015;2015:981458. doi: 10.1155/2015/981458

 

  1. Wilson AD. Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of gastrointestinal diseases. Sensors (Basel). 2018;18(8):2613. doi: 10.3390/s18082613

 

  1. Christiansen A, Davidsen JR, Titlestad I, Vestbo J, Baumbach J. A systematic review of breath analysis and detection of volatile organic compounds in COPD. J Breath Res. 2016;10(3):034002. doi: 10.1088/1752-7155/10/3/034002

 

  1. Bannaga AS, Farrugia A, Arasaradnam RP. Diagnosing Inflammatory bowel disease using noninvasive applications of volatile organic compounds: A systematic review. Expert Rev Gastroenterol Hepatol. 2019;13(11):1113-1122. doi: 10.1080/17474124.2019.1685873

 

  1. Grabowska-Polanowska B, Skowron M, Miarka P, Pietrzycka A, Śliwka I. The application of chromatographic breath analysis in the search of volatile biomarkers of chronic kidney disease and coexisting type 2 diabetes mellitus. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1060:103-110. doi: 10.1016/j.jchromb

 

  1. Sinclair E, Walton-Doyle C, Sarkar D, et al. Validating differential volatilome profiles in Parkinson’s disease. ACS Cent Sci. 2021;7(2):300-306. doi: 10.1021/acscentsci.0c01028

 

  1. Plat VD, Bootsma BT, Neal M, et al. Urinary volatile organic compound markers and colorectal anastomotic leakage. Colorectal Dis. 2019;21(11):1249-1258. doi: 10.1111/codi.14732

 

  1. Plat VD, van Gaal N, Covington JA, et al. Non-invasive detection of anastomotic leakage following esophageal and pancreatic surgery by urinary analysis. Dig Surg. 2019;36(2):173-180. doi: 10.1159/000488007

 

  1. Francis NK, Curtis NJ, Salib E, et al. Feasibility of perioperative volatile organic compound breath testing for prediction of paralytic ileus following laparoscopic colorectal resection. Colorectal Dis. 2020;22(1):86-94. doi: 10.1111/codi.14788

 

  1. Kreuder AE, Buchinger H, Kreuer S, et al. Characterization of propofol in human breath of patients undergoing anesthesia. Int J Ion Mobility Spectrom. 2011;14(4):167-175. doi: 10.1007/s12127-011-0080-y

 

  1. Rondanelli M, Perdoni F, Infantino V, et al. Volatile organic compounds as biomarkers of gastrointestinal diseases and nutritional status. J Anal Methods Chem. 2019;2019:7247802. doi: 10.1155/2019/7247802

 

  1. Hageman JHJ, Nieuwenhuizen AG, Ruth SM, et al. Application of volatile organic compound analysis in a nutritional intervention study: Differential responses during five hours following consumption of a high‐ and a low‐fat dairy drink. Mol Nutr Food Res. 2019;63(20):e1900189. doi: 10.1002/mnfr.201900189

 

  1. Gorynski K. A critical review of solid-phase microextraction applied in drugs of abuse determinations and potential applications for targeted doping testing. Trends Analyt Chem. 2019;112:135-146. doi: 10.1016/j.trac.2018.12.029

 

  1. Abraham MH, Ibrahim A, Acree WE Jr. Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs. Eur J Med Chem. 2007;42(6):743-751. doi: 10.1016/j.ejmech.2006.12.011

 

  1. Łuczykowski K, Warmuzińska N, Bojko B. Solid phase microextraction-a promising tool for graft quality monitoring in solid organ transplantation. Separations. 2023;10(3):153. doi: 10.3390/separations10030153

 

  1. Hüppe T, Klasen R, Maurer F, et al. Volatile organic compounds in patients with acute kidney injury and changes during dialysis. Crit Care Med. 2019;47(2):239-246. doi: 10.1097/CCM.0000000000003523

 

  1. Sethi S, Ranjan N, Trinad C. Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev. 2013;26(3):462-475. doi: 10.1128/CMR.00020-13

 

  1. Dospinescu VM, Tiele A, Covington JA. Sniffing out urinary tract infection-diagnosis based on volatile organic compounds and smell profile. Biosensors (Basel). 2020;10(8):83. doi: 10.3390/bios10080083

 

  1. Neerincx AH, Geurts BP, van Loon J, et al. Detection of Staphylococcus aureus in cystic fibrosis patients using breath VOC profiles. J Breath Res. 2016;10(4):046014. doi: 10.1088/1752-7155/10/4/046014

 

  1. Altomare DF, Di Lena M, Porcelli F, et al. Exhaled volatile organic compounds identify patients with colorectal cancer. Br J Surg. 2013;100(1):144-150. doi: 10.1002/bjs.8942

 

  1. Waltman CG, Marcelissen TA, van Roermund JG. Exhaled-breath testing for prostate cancer based on volatile organic compound profiling using an electronic nose device (Aeonose™): A preliminary report. Eur Urol Focus. 2020;6(6):1220-1225. doi: 10.1016/j.euf.2018.11.006

 

  1. Liu Q, Fan Y, Zeng S, et al. Volatile organic compounds for early detection of prostate cancer from urine. Heliyon. 2023;9(6):e16686. doi: 10.1016/j.heliyon.2023.e16686

 

  1. Amal H, Leja M, Funka K, et al. Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut. 2016;65(3):400-407. doi: 10.1136/gutjnl-2014-308536

 

  1. Xu ZQ, Broza YY, Ionsecu R, et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer. 2013;108(4):941-950. doi: 10.1038/bjc.2013.44
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing