Effect of 900 MHz radiofrequency electromagnetic radiation emitted from mobile phone on testicular immunity and the associated risk of testicular germ cell tumor
The emission of radiofrequency electromagnetic radiation (RF-EMR) from mobile phones has been implicated in causing inflammatory changes in the testis. Nevertheless, the direct association of these changes with the development of testicular germ cell tumors (TGCT) remains unclear. Therefore, we purposed to investigate the effect of RF-EMR exposure on inflammatory changes in the testis, cytokine gene expression levels, and the incidence of TGCT. Twenty male Wistar albino rats were randomly assigned to either the study or control groups. The study group was exposed to RF-EMR at 900 MHz, 26 V/m, and a specific absorption rate (SAR) of 0.14 W/kg for 4 h/day over 8 weeks. Histopathological analysis, vitality analysis using Annexin V, and real-time polymerase chain reaction for the analysis of interleukin 1 (IL-1), IL-4, IL-10, tumor necrosis factor-alpha, and interferon-gamma (IFN-γ) cytokine gene expressions were performed on the testicular tissue. The median testis weight (163.0 g [133.0 – 183.0] vs. 179.0 g [134.0 – 195.0], P = 0.012) and volume (0.95 cm3 [0.800 – 1.400] vs. 1.100 cm3 [1.050 – 1.500], P = 0.031) of the study group were significantly lower compared to the control group. The seminiferous tubule damage (P < 0.001) and interstitial edema (P = 0.042) were significantly higher in the study group. The tunica albuginea thickness was significantly reduced in the study group (P < 0.001). The fold changes in the expression levels of IL-4 and IFN-γ increased significantly in the study group. Our findings indicate that RF-EMR exposure causes structural, histopathological, and inflammatory toxic effects on the testis. The observed elevation in gene expression levels of IL-4 and IFN-γ cytokines following RF-EMR exposure suggests their potential role as regulators of TGCT initiation, thereby offering a viable potential therapeutic target in combination with current treatments. Nonetheless, future well-designed studies are necessary to validate our findings.
- Bilgici B, Gun S, Avci B, Akar A, Engiz BK. What is adverse effect of wireless local area network, using 2.45 GHz, on the reproductive system? Int J Radiat Biol. 2018;94(11):1054-1061. doi: 10.1080/09553002.2018.1503430
- Kivrak E, Yurt K, Kaplan A, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct. 2017;5(4):167-176. doi: 10.1016/j.jmau.2017.07.003
- Chovanec M, Mardiak J, Mego M. Immune mechanisms and possible immune therapy in testicular germ cell tumours. Andrology. 2019;7(4):479-486. doi: 10.1111/andr.12656
- Klein B, Haggeney T, Fietz D, et al. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia. Hum Reprod. 2016;31(10):2192-2202. doi: 10.1093/humrep/dew211
- Gautam R, Singh KV, Nirala J, Murmu NN, Meena R, Rajamani P. Oxidative stress-mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia. 2019;51(3):e13201. doi: 10.1111/and.13201
- Lu YS, Huang BT, Huang YX. Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation. Oxid Med Cell Longev. 2012;2021:740280. doi: 10.1155/2012/740280
- Hasan I, Amin T, Alam MR, Islam MR. Hematobiochemical and histopathological alterations of kidney and testis due to exposure of 4G cell phone radiation in mice. Saudi J Biol Sci. 2021;28(5):2933-2942. doi: 10.1016/j.sjbs.2021.02.028
- Ozlem Nisbet H, Nisbet C, Akar A, Cevik M, Onder Karayigit M. Effects of exposure to electromagnetic field (1.8/0.9 GHz) on testicular function and structure in growing rats. Res Vet Sci. 2012;93(2):1001-1005. doi: 10.1016/j.rvsc.2011.10.023
- Çetkin M, Kizilkan N, Demirel C, Bozdağ Z, Erkiliç S, Erbağci H. Quantitative changes in testicular structure and function in rat exposed to mobile phone radiation. Andrologia, 2017;49(10): e12761. doi: 10.1111/and.12761
- Yahyazadeh A, Altunkaynak BZ, Kaplan S. Biochemical, immunohistochemical and morphometrical investigation of the effect of thymoquinone on the rat testis following exposure to a 900-MHz electromagnetic field. Acta Histochem. 2020;122(1):151467. doi: 10.1016/j.acthis.2019.151467
- Agarwal A, Singh A, Hamada A, Kesari K. Cell phones and male infertility: A review of recent innovations in technology and consequences. Int Braz J Urol. 2011;37(4):432-454. doi: 10.1590/s1677-55382011000400002
- Dasdag S, Taş M, Akdag MZ, Yegin K. Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med. 2015;34(1):37-42. doi: 10.3109/15368378.2013.869752
- Garolla A, De Giorgi U, Milardi D. Editorial: Testicular cancer: New insights on the origin, genetics, treatment, fertility, general health, quality of life and sexual function. Front Endocrinol. 2020;11:41. doi: 10.3389/fendo.2020.00041
- Hardell L, Carlberg M, Ohlson CG, Westberg H, Eriksson M, Hansson Mild K. Use of cellular and cordless telephones and risk of testicular cancer. Int J Androl. 2007;30(2):115-122. doi: 10.1111/j.1365-2605.2006.00721.x
- Svetlovska D, Miskovska V, Cholujova D, et al. Plasma cytokines correlated with disease characteristics, progression-free survival, and overall survival in testicular germ-cell tumor patients. Clin Genitourin Cancer. 2017;15(3):411-416.e2. doi: 10.1016/j.clgc.2017.01.027
- Hao Y, Yang X, Chen C, et al. STAT3 signalling pathway is involved in the activation of microglia induced by 2.45 GHz electromagnetic fields. Int J Radiat Biol. 2010;86(1):27-36. doi: 10.3109/09553000903264507
- Subramaniam A, Shanmugam MK, Perumal E, et al. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta. 2013;1835(1):46-60. doi: 10.1016/j.bbcan.2012.10.002
- Wang X, Xin W, Zhang H, et al. Aberrant expression of p-STAT3 in peripheral blood CD4+ and CD8+ T cells related to hepatocellular carcinoma development. Mol Med Rep. 2014;10(5):2649-2656. doi: 10.3892/mmr.2014.2510
- Nappo G, Handle F, Santer FR, et al. The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis. 2017;6(5):e342. doi: 10.1038/oncsis.2017.23
- Erb HHH, Guggenberger F, Santer FR, Culig Z. Interleukin-4 induces a CD44high/CD49bhigh PC3 subpopulation with tumor-initiating characteristics. J Cell Biochem. 2018;119(5):4103-4112. doi: 10.1002/jcb.26607
- Erb HHH, Culig Z, Stope MB. IL-4 Counteracts the cytotoxic effects of peripheral blood mononuclear cells on hormone-sensitive prostate cancer cells. In Vivo. 2021;35(4):1973-1977. doi: 10.21873/invivo.12465
- Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. The IL-4 receptor: Signaling mechanisms and biologic functions. Annu Rev Immunol. 1999;17:701-738. doi: 10.1146/annurev.immunol.17.1.701
- Goldstein R, Hanley C, Morris J, et al. Clinical investigation of the role of interleukin-4 and interleukin-13 in the evolution of prostate cancer. Cancers (Basel). 2011;3(4):4281-4293.doi: 10.3390/cancers3044281
- Lee SO, Lou W, Nadiminty N, Lin X, Gao AC. Requirement for NF-(kappa)B in interleukin-4-induced androgen receptor activation in prostate cancer cells. Prostate. 2005;64(2):160-167. doi: 10.1002/pros.20218
- Di Stefano AB, Lovino F, Lombardo Y, et al. Survivin is regulated by interleukin-4 in colon cancer stem cells. J Cell Physiol. 2010;225(2):555-561. doi: 10.1002/jcp.22238
- Traub B, Sun L, Ma Y, et al. Endogenously expressed IL-4Rα promotes the malignant phenotype of human pancreatic cancer in vitro and in vivo. Int J Mol Sci. 2017;18(4):716. doi: 10.3390/ijms18040716
- Gaggianesi M, Turdo A, Chinnici Z, et al. IL4 primes the dynamics of breast cancer progression via DUSP4 inhibition. Cancer Res. 2017;77(12):3268-3279. doi: 10.1158/0008-5472.CAN-16-3126
- Schweyer S, Soruri A, Peters J, et al. Malignant germ cell tumours of the testis express interferon-gamma, but are resistant to endogenous interferon-gamma. Br J Cancer. 2003;89(5):915-921. doi: 10.1038/sj.bjc.6601209
- Gocher AM,Workman CJ, Vignali DA. Interferon-γ: Teammate or opponent in the tumour microenvironment? Nat Rev Immunol. 2022;22(3):158-172. doi: 10.1038/s41577-021-00566-3
- Benci JL,Xu B, Qiu Y, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167(6):1540-1554.e12. doi: 10.1016/j.cell.2016.11.022