AccScience Publishing / TD / Volume 4 / Issue 1 / DOI: 10.36922/td.7825
ORIGINAL RESEARCH ARTICLE

Homoharringtonine inhibits pancreatic cancer progression via mitochondrial energy metabolism suppression and macrophages reduction

Xiaoxia Wang1 Tao Wang1 Xuelu Peng1 Ke Zhu1 Ming Ye1 Jie Meng1* Haiyan Xu1*
Show Less
1 Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Tumor Discovery 2025, 4(1), 99–112; https://doi.org/10.36922/td.7825
Submitted: 17 December 2024 | Revised: 20 January 2025 | Accepted: 24 January 2025 | Published: 24 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Homoharringtonine (HHT) has been used in leukemia therapy since the 1970s. Its inhibitory effects on solid tumors have attracted increasing interest and have been actively explored in recent years. This study investigates the therapeutic effects and pharmacological mechanisms of HHT on pancreatic cancer, focusing on mitochondrial energy metabolism and macrophage sensitivity to HHT. HHT significantly inhibited the proliferation and colony formation of pancreatic cancer cell lines PANC-1 and Pan02 in vitro and suppressed tumorigenic potential in vivo. The mechanistic study revealed that HHT induced a significant elevation of reactive oxygen species (ROS) levels in pancreatic cancer cells over time, as evidenced by the enhanced dichlorodihydrofluorescein diacetate fluorescence and an elevated NAD+/NADH ratio. This resulted in mitochondrial respiratory dysfunction, including reductions in basal respiration, maximal respiration, and adenosine triphosphate production. In addition, HHT caused cell cycle arrest and disrupted the cytoskeleton, thereby inhibiting cell division and proliferation. The anti-tumor effects of HHT were further evaluated using a subcutaneous pancreatic tumor-bearing mouse model, showing that HHT inhibited the proliferation of pancreatic tumor cells in vivo, which led to reduced tumor mass. Moreover, HHT significantly reduced the viability of macrophages both in vitro and in vivo, leading to the depletion of tumor-associated macrophages in the tumor microenvironment (TME), thereby alleviating immune suppression. In conclusion, HHT effectively inhibits pancreatic cancer progression through upregulating cellular ROS levels over time, thereby disrupting mitochondrial respiratory capacity in tumor cells and reducing macrophage populations, contributing to TME reprogramming and immune restoration.

Keywords
Pancreatic cancer
Reactive oxygen species
Mitochondrial energy metabolism
Cell cycle
Tumor microenvironment
Funding
This work was supported by CAMS Innovation Fund for Medical Science (CIFMS 2021-I2M-1- 026), Haihe Laboratory of Cell Ecosystem Innovation Fund (22HHXBSS00040) and Beijing Natural Science Foundation (7244372).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Cai J, Chen H, Lu M, et al. Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Lett. 2021;520:1-11. doi: 10.1016/j.canlet.2021.06.027

 

  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834

 

  1. Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: Integrating omics and clinical data. Nat Rev Cancer. 2022;22(3):131-142. doi: 10.1038/s41568-021-00418-1

 

  1. Christenson ES, Jaffee E, Azad NS. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: A bright future. Lancet Oncol. 2020;21(3):e135-e145. doi: 10.1016/S1470-2045(19)30795-8

 

  1. Niu N, Shen X, Wang Z, et al. Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell. 2024;42(5):869-884.e9. doi: 10.1016/j.ccell.2024.03.005

 

  1. Raghavan S, Winter PS, Navia AW, et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell. 2021;184(25):6119-6137.e26. doi: 10.1016/j.cell.2021.11.017

 

  1. Li E, Cheung HCZ, Ma S. CTHRC1+ fibroblasts and SPP1+ macrophages synergistically contribute to pro-tumorigenic tumor microenvironment in pancreatic ductal adenocarcinoma. Sci Rep. 2024;14(1):17412. doi: 10.1038/s41598-024-68109-z

 

  1. Spratlin J, Sangha R, Glubrecht D, et al. The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res. 2004;10(20):6956-6961. doi: 10.1158/1078-0432.CCR-04-0224

 

  1. Fresno M, Jiménez A, Vázquez D. Inhibition of translation in eukaryotic systems by harringtonine. Eur J Biochem. 1977;72(2):323-330. doi: 10.1111/j.1432-1033.1977.tb11256.x

 

  1. Baaske DM, Heinstein P. Cytotoxicity and cell cycle specificity of homoharringtonine. Antimicrob Agents Chemother. 1977;12(2):298-300. doi: 10.1128/AAC.12.2.298

 

  1. Kantarjian HM, O’Brien S, Cortes J. Homoharringtonine/ omacetaxine mepesuccinate: The long and winding road to food and drug administration approval. Clin Lymphoma Myeloma Leuk. 2013;13(5):530-533. doi: 10.1016/j.clml.2013.03.017

 

  1. Powell RG, Weisleder D, Smith CR, Rohwedder WK. Structures of harringtonine, isoharringtonine, and homoharringtonine. Tetrahedron Lett. 1970;(11):815-818. doi: 10.1016/s0040-4039(01)97839-6

 

  1. Wang L, Zhao L, Wei G, et al. Homoharringtonine could induce quick protein synthesis of PSMD11 through activating MEK1/ERK1/2 signaling pathway in pancreatic cancer cells. J Cell Biochem. 2018;119(8):6644-6656. doi: 10.1002/jcb.26847

 

  1. Fountzilas G, Lim LO, Yunis AA. The inhibitory effects of teniposide and homoharringtonine on the growth of pancreatic carcinoma cells in vitro. Anticancer Res. 1988;8(3):343-346.

 

  1. Sarwar A, Zhu Z, Zhu M, et al. Homoharringtonine sensitizes pancreatic cancer to erlotinib by direct targeting and miRNA-130b-3p-mediated EphB4-JAK2-STAT3 axis. J Pharm Pharmacol. 2023;75(10):1294-1309. doi: 10.1093/jpp/rgad055

 

  1. Han H, Zhao C, Liu M, et al. Mitochondrial complex I inhibition by homoharringtonine: A novel strategy for suppression of chronic myeloid leukemia. Biochem Pharmacol. 2023;218:115875. doi: 10.1016/j.bcp.2023.115875

 

  1. Jeong KY, Sim JJ, Park M, Kim HM. Accumulation of poly (adenosine diphosphate-ribose) by sustained supply of calcium inducing mitochondrial stress in pancreatic cancer cells. World J Gastroenterol. 2022;28(27):3422-3434. doi: 10.3748/wjg.v28.i27.3422

 

  1. Zhu X, Zhang Y, Wang Y, et al. Agrimoniin sensitizes pancreatic cancer to apoptosis through ROS-mediated energy metabolism dysfunction. Phytomedicine. 2022;96:153807. doi: 10.1016/j.phymed.2021.153807

 

  1. Xia S, Miao Y, Liu S. Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Biochem Biophys Res Commun. 2018;503(4):2363-2369. doi: 10.1016/j.bbrc.2018.06.162

 

  1. Percie du Sert N, Ahluwalia A, Alam S, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7):e3000411. doi: 10.1371/journal.pbio.3000411

 

  1. Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J. Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J. 2020;34(10):13106-13124. doi: 10.1096/fj.202000767R

 

  1. Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S, Donadelli M. Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochim Biophys Acta. 2015;1853(1):89-100. doi: 10.1016/j.bbamcr.2014.10.003

 

  1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913-2921. doi: 10.1158/0008-5472.CAN-14-0155

 

  1. Liu J, He X, Deng S, et al. QDPR deficiency drives immune suppression in pancreatic cancer. Cell Metab. 2024;36(5):984-999.e8. doi: 10.1016/j.cmet.2024.03.015

 

  1. Tintelnot J, Xu Y, Lesker TR, et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature. 2023;615(7950):168-174. doi: 10.1038/s41586-023-05728-y

 

  1. Zhang W, Gong M, Zhang W, et al. Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling. Cell Death Dis. 2022;13(7):630. doi: 10.1038/s41419-022-05082-3

 

  1. Badgley MA, Kremer DM, Maurer HC, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 2020;368(6486):85-89. doi: 10.1126/science.aaw9872

 

  1. Zhang J, Geng H, Liu L, Zhang H. Synergistic cytotoxicity of homoharringtonine and etoposide in acute myeloid leukemia cells involves disrupted antioxidant defense. Cancer Manag Res. 2019;11:1023-1032. doi: 10.2147/CMAR.S187597

 

  1. Chenghao H, Xuefeng L, Junli P, et al. Mitochondrial-targeting strategies with homoharringtonine: A novel approach for chemoresistant rectal cancer. Biochem Biophys Res Commun. 2025;743:151141. doi: 10.1016/j.bbrc.2024.151141

 

  1. Nunnari J, Suomalainen A. Mitochondria: In sickness and in health. Cell. 2012;148(6):1145-1159. doi: 10.1016/j.cell.2012.02.035

 

  1. Bullock AN, Fersht AR. Rescuing the function of mutant p53. Nat Rev Cancer. 2001;1(1):68-76. doi: 10.1038/35094077

 

  1. Acin S, Li Z, Mejia O, Roop DR, El-Naggar AK, Caulin C. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras. J Pathol. 2011;225(4):479-489. doi: 10.1002/path.2971

 

  1. Di Agostino S, Strano S, Emiliozzi V, et al. Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell. 2006;10(3):191-202. doi: 10.1016/j.ccr.2006.08.013

 

  1. Di Agostino S, Sorrentino G, Ingallina E, et al. YAP enhances the pro-proliferative transcriptional activity of mutant p53 proteins. EMBO Rep. 2016;17(2):188-201. doi: 10.15252/embr.201540488

 

  1. Winters ZE, Ongkeko WM, Harris AL, Norbury CJ. p53 regulates Cdc2 independently of inhibitory phosphorylation to reinforce radiation-induced G2 arrest in human cells. Oncogene. 1998;17(6):673-684. doi: 10.1038/sj.onc.1201991

 

  1. Le Gac G, Estève PO, Ferec C, Pradhan S. DNA damage-induced down-regulation of human Cdc25C and Cdc2 is mediated by cooperation between p53 and maintenance DNA (cytosine-5) methyltransferase 1. J Biol Chem. 2006;281(34):24161-24170. doi: 10.1074/jbc.M603724200

 

  1. Thanasoula M, Escandell JM, Suwaki N, Tarsounas M. ATM/ATR checkpoint activation downregulates CDC25C to prevent mitotic entry with uncapped telomeres. EMBO J. 2012;31(16):3398-3410. doi: 10.1038/emboj.2012.191

 

  1. Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12(1):76. doi: 10.1186/s13045-019-0760-3

 

  1. Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol. 2022;15(1):118. doi: 10.1186/s13045-022-01335-y

 

  1. Plett R, Mellor P, Kendall S, et al. Homoharringtonine demonstrates a cytotoxic effect against triple-negative breast cancer cell lines and acts synergistically with paclitaxel. Sci Rep. 2022;12(1):15663. doi: 10.1038/s41598-022-19621-7

 

  1. Beranova L, Pombinho AR, Spegarova J, et al. The plant alkaloid and anti-leukemia drug homoharringtonine sensitizes resistant human colorectal carcinoma cells to TRAIL-induced apoptosis via multiple mechanisms. Apoptosis. 2013;18(6):739-750. doi: 10.1007/s10495-013-0823-9

 

Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing