Organoids: Applications and challenges of advanced hydrogels in tissue systems

Repair and regeneration of tissues and organs remain central to medical research. Organoids, advanced models created through in vitro tissue engineering, enable stem cells to form three-dimensional structures that replicate organ tissues and function spontaneously. The advancement of organoid technology has greatly enhanced our understanding of disease progression and organ development. A crucial component of this technology is the development of appropriate scaffolds to support organoid growth. Recently, hydrogels have emerged as promising materials due to their excellent biocompatibility, tunability, and degradability, facilitating the in vitro culture of stem cells and their differentiation into various organoids. However, more complex organ models, which involve extensive intercellular and extracellular communication, present significant challenges for present research. Moreover, advancements in biomaterial fabrication and their integration with organoid technology remain underexplored. This review explores the pivotal role of hydrogels in organoid preparation, comparing the advantages and limitations of different hydrogel fabrication methods. It also highlights recent advancements in the application of organoid hydrogels across various biological systems and discusses future challenges and directions in this field.

- Nguyen NT, Shaegh SA, Kashaninejad N, Phan DT. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv Drug Deliv Rev. 2013;65:1403-1419. doi: 10.1016/j.addr.2013.05.008
- Cho J, Lee H, Rah W, Chang HJ, Yoon YS. From engineered heart tissue to cardiac organoid. Theranostics. 2022;12:2758-2772. doi: 10.7150/thno.67661
- Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14:910-919. doi: 10.5114/aoms.2016.63743
- Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586-1597. doi: 10.1016/j.cell.2016.05.082
- Tang XY, Wu S, Wang D, et al. Human organoids in basic research and clinical applications. Signal Transduct Target Ther. 2022;7:168. doi: 10.1038/s41392-022-01024-9
- Huang J, Feng Q, Wang L, Zhou B. Human pluripotent stem cell-derived cardiac cells: Application in disease modeling, cell therapy, and drug discovery. Front Cell Dev Biol. 2021;9:655161. doi: 10.3389/fcell.2021.655161
- O’Hara-Wright M, Gonzalez-Cordero A. Retinal organoids: A window into human retinal development. Development. 2020;147:dev189746. doi: 10.1242/dev.189746
- Zhou Y, Song H, Ming G. Genetics of human brain development. Nat Rev Genet. 2024;25:26-45. doi: 10.1038/s41576-023-00626-5
- Jalan‐Sakrikar N, Brevini T, Huebert RC, Sampaziotis F. Organoids and regenerative hepatology. Hepatology. 2023;77:305-322. doi: 10.1002/hep.32583
- Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-organ axes: Bidirectional crosstalk. Mil Med Res. 2024;11:37. doi: 10.1186/s40779-024-00540-9
- Horvath TD, Haidacher SJ, Engevik MA, et al. Interrogation of the mammalian gut-brain axis using LC-MS/MS-based targeted metabolomics with in vitro bacterial and organoid cultures and in vivo gnotobiotic mouse models. Nat Protoc. 2023;18:490-529. doi: 10.1038/s41596-022-00767-7
- Zhang YW, Wu Y, Liu XF, Chen X, Su JC. Targeting the gut microbiota-related metabolites for osteoporosis: The inextricable connection of gut-bone axis. Ageing Res Rev. 2024;94:102196. doi: 10.1016/j.arr.2024.102196
- Crespo M, Vilar E, Tsai SY, et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med. 2017;23:878-884. doi: 10.1038/nm.4355
- Hu W, Lazar MA. Modelling metabolic diseases and drug response using stem cells and organoids. Nat Rev Endocrinol. 2022;18:744-759. doi: 10.1038/s41574-022-00733-z
- Seidlitz T, Schmäche T, Garcίa F, et al. Sensitivity towards HDAC inhibition is associated with RTK/MAPK pathway activation in gastric cancer. EMBO Mol Med. 2022;14:e15705. doi: 10.15252/emmm.202215705
- Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539:560-564. doi: 10.1038/nature20168
- Ruiter FAA, Morgan FLC, Roumans N, et al. Soft, dynamic hydrogel confinement improves kidney organoid lumen morphology and reduces epithelial-mesenchymal transition in culture. Adv Sci (Weinh). 2022;9(20):e2200543. doi: 10.1002/advs.202200543
- Sullivan KM, Ko E, Kim EM, et al. Extracellular microenvironmental control for organoid assembly. Tissue Eng Part B Rev. 2022;28:1209-1222. doi: 10.1089/ten.TEB.2021.0186
- Liu H, Wang Y, Cui K, Guo Y, Zhang X, Qin J. Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater. 2019;31(50):e1902042. doi: 10.1002/adma.201902042
- Wilson HV. A new method by which sponges may be artificially reared. Science. 1907;25(649):912-915. doi: 10.1126/science.25.649.912
- Kleinman HK, McGarvey ML, Hassell JR, et al. Basement membrane complexes with biological activity. Biochemistry. 1986;25:312-318. doi: 10.1021/bi00350a005
- Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-1147. doi: 10.1126/science.282.5391.1145
- Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262-265. doi: 10.1038/nature07935
- Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373-379. doi: 10.1038/nature12517
- Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett’s epithelium. Gastroenterology. 2011;141:1762-1772. doi: 10.1053/j.gastro.2011.07.050
- Drakhlis L, Biswanath S, Farr CM, et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol. 2021;39:737-746. doi: 10.1038/s41587-021-00815-9
- Lewis-Israeli YR, Wasserman AH, Gabalski MA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun. 2021;12:5142. doi: 10.1038/s41467-021-25329-5
- Khan AO, Rodriguez-Romera A, Reyat JS, et al. Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discov. 2023;13:364-385. doi: 10.1158/2159-8290.CD-22-0199
- Prondzynski M, Berkson P, Trembley MA, et al. Efficient and reproducible generation of human iPSC-derived cardiomyocytes and cardiac organoids in stirred suspension systems. Nat Commun. 2024;15:5929. doi: 10.1038/s41467-024-50224-0
- Yang P, Wu L, Zhang G, et al. Cell spheroids culture array with modifiable chemical gradients. Cell Prolif. 2023;56:e13473. doi: 10.1111/cpr.13473
- Hirokawa Y, Clarke J, Palmieri M, et al. Low-viscosity matrix suspension culture enables scalable analysis of patient-derived organoids and tumoroids from the large intestine. Commun Biol. 2021;4:1067. doi: 10.1038/s42003-021-02607-y
- Jantaree P, Bakhchova L, Steinmann U, Naumann M. From 3D back to 2D monolayer stomach organoids-on-a-chip. Trends Biotechnol. 2021;39:745-748. doi: 10.1016/j.tibtech.2020.11.013
- Wang J, Wu X, Zhao J, Ren H, Zhao Y. Developing liver microphysiological systems for biomedical applications. Adv Healthc Mater. 2024;13:2302217. doi: 10.1002/adhm.202302217
- Zeming KK, Thakor NV, Zhang Y, Chen CH. Real-time modulated nanoparticle separation with an ultra-large dynamic range. Lab Chip. 2016;16:75-85. doi: 10.1039/C5LC01051A
- Zou Z, Lin Z, Wu C, et al. Micro‐engineered organoid‐on‐a‐chip based on mesenchymal stromal cells to predict immunotherapy responses of HCC patients. Adv Sci. 2023;10:2302640. doi: 10.1002/advs.202302640
- Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic tissue engineering and bio‐actuation. Adv Mater. 2022;34:2108427. doi: 10.1002/adma.202108427
- Marcos LF, Wilson SL, Roach P. Tissue engineering of the retina: From organoids to microfluidic chips. J Tissue Eng. 2021;12. doi: 10.1177/20417314211059876
- Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175:1972-1988.e16. doi: 10.1016/j.cell.2018.11.021
- Giandomenico SL, Mierau SB, Gibbons GM, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22(4):669-679. doi: 10.1038/s41593-019-0350-2
- Li X, Ootani A, Kuo C. An Air-Liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues. Methods Mol Biol. 2016;1422:33-40. doi: 10.1007/978-1-4939-3603-8_4
- Zheng L, Dong H, Zhao W, et al. An air-liquid interface organ-level lung microfluidics platform for analysis on molecular mechanisms of cytotoxicity induced by cancer-causing fine particles. ACS Sens. 2019;4:907-917. doi: 10.1021/acssensors.8b01672
- Gholami K, Vermeulen M, Del Vento F, De Michele F, Giudice MG, Wyns C. The air-liquid interface culture of the mechanically isolated seminiferous tubules embedded in agarose or alginate improves in vitro spermatogenesis at the expense of attenuating their integrity. In Vitro Cell Dev Biol Anim. 2020;56:261-270. doi: 10.1007/s11626-020-00437-6
- Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985-999. doi: 10.1016/j.cell.2017.05.016
- Su Y, Fu C, Ishikawa S, et al. APC is essential for targeting phosphorylated β-catenin to the SCFβ-TrCP ubiquitin ligase. Mol Cell. 2008;32:652-661. doi: 10.1016/j.molcel.2008.10.023
- Koraishy FM, Silva C, Mason S, Wu D, Cantley LG. Hepatocyte growth factor (Hgf) stimulates low density lipoprotein receptor-related protein (Lrp) 5/6 Phosphorylation and promotes canonical wnt signaling. J Biol Chem. 2014;289:14341-14350. doi: 10.1074/jbc.M114.563213
- Qian X, Su Y, Adam CD, et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell. 2020;26:766-781.e9. doi: 10.1016/j.stem.2020.02.002
- Huch M, Dorrell C, Boj SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by wnt-driven regeneration. Nature. 2013;494:247-250. doi: 10.1038/nature11826
- Yin X, Farin HF, Van Es JH, Clevers H, Langer R, Karp JM. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods. 2014;11:106-112. doi: 10.1038/nmeth.2737
- Kim HJ, Kim G, Chi KY, et al. Generation of multilineage liver organoids with luminal vasculature and bile ducts from human pluripotent stem cells via modulation of notch signaling. Stem Cell Res Ther. 2023;14:19. doi: 10.1186/s13287-023-03235-5
- Santos CP, Lapi E, Martínez De Villarreal J, et al. Urothelial organoids originating from Cd49fhigh mouse stem cells display notch-dependent differentiation capacity. Nat Commun. 2019;10:4407. doi: 10.1038/s41467-019-12307-1
- Kessler M, Hoffmann K, Brinkmann V, et al. The notch and wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989. doi: 10.1038/ncomms9989
- Zhang Y, Que J. BMP signaling in development, stem cells, and diseases of the gastrointestinal tract. Annu Rev Physiol. 2020;82:251-273. doi: 10.1146/annurev-physiol-021119-034500
- Bustamante-Madrid P, Barbáchano A, Albandea- Rodríguez D, et al. Vitamin D opposes multilineage cell differentiation induced by notch inhibition and BMP4 pathway activation in human colon organoids. Cell Death Dis. 2024;15:301. doi: 10.1038/s41419-024-06680-z
- Koehler KR, Nie J, Longworth-Mills E, et al. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat Biotechnol. 2017;35:583-589. doi: 10.1038/nbt.3840
- Deng Z, Fan T, Xiao C, et al. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther. 2024;9:61. doi: 10.1038/s41392-024-01764-w
- Lee J, Rabbani C, Gao H, et al. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature. 2020;582(7812):399-404. doi: 10.1038/s41586-020-2352-3
- Pagliaro A, Finger R, Zoutendijk I, et al. Temporal morphogen gradient-driven neural induction shapes single expanded neuroepithelium brain organoids with enhanced cortical identity. Nat Commun. 2023;14:7361. doi: 10.1038/s41467-023-43141-1
- Li X, Sheng S, Li G, et al. Research progress in hydrogels for cartilage organoids. Adv Healthc Mater. 2024;13:e2400431. doi: 10.1002/adhm.202400431
- Ma P, Chen Y, Lai X, et al. The translational application of hydrogel for organoid technology: Challenges and future perspectives. Macromol Biosci. 2021;21:e2100191. doi: 10.1002/mabi.202100191
- Kratochvil MJ, Seymour AJ, Li TL, Paşca SP, Kuo CJ, Heilshorn SC. Engineered materials for organoid systems. Nat Rev Mater. 2019;4:606-622. doi: 10.1038/s41578-019-0129-9
- Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater. 2023;28:386-401. doi: 10.1016/j.bioactmat.2023.06.004
- Tayler IM, Stowers RS. Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomater. 2021;132:4-22. doi: 10.1016/j.actbio.2021.04.020
- Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized extracellular matrix for remodeling bioengineering organoid’s microenvironment. Small. 2023;19:2207752. doi: 10.1002/smll.202207752
- De Santis MM, Alsafadi HN, Tas S, et al. Extracellular-matrix-reinforced bioinks for 3D bioprinting human tissue. Adv Mater. 2021;33:e2005476. doi: 10.1002/adma.202005476
- Giobbe GG, Crowley C, Luni C, et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun. 2019;10:5658. doi: 10.1038/s41467-019-13605-4
- Kim JW, Nam SA, Yi J, et al. Kidney decellularized extracellular matrix enhanced the vascularization and maturation of human kidney organoids. Adv Sci. 2022;9:2103526. doi: 10.1002/advs.202103526
- Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement strategies for advanced applications. Int J Mol Sci. 2022;23:4486. doi: 10.3390/ijms23094486
- Fang G, Lu H, Rodriguez de la Fuente L, et al. Mammary tumor organoid culture in non-adhesive alginate for luminal mechanics and high-throughput drug screening. Adv Sci (Weinh). 2021;8:e2102418. doi: 10.1002/advs.202102418
- Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules. 2019;9:470. doi: 10.3390/biom9090470
- Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Res Int. 2015;2015:821279. doi: 10.1155/2015/821279
- Upadhyay U, Kolla S, Maredupaka S, Priya S, Srinivasulu K, Chelluri LK. Development of an alginate-chitosan biopolymer composite with dECM bioink additive for organ-on-a-chip articular cartilage. Sci Rep. 2024;14:11765. doi: 10.1038/s41598-024-62656-1
- Iaconisi GN, Lunetti P, Gallo N, et al. Hyaluronic acid: A powerful biomolecule with wide-ranging applications-a comprehensive review. Int J Mol Sci. 2023;24:10296. doi: 10.3390/ijms241210296
- Tsou YH, Khoneisser J, Huang PC, Xu X. Hydrogel as a bioactive material to regulate stem cell fate. Bioact Mater. 2016;1(1):39-55. doi: 10.1016/j.bioactmat.2016.05.001
- Luo Y, Tan J, Zhou Y, et al. From crosslinking strategies to biomedical applications of hyaluronic acid-based hydrogels: A review. Int J Biol Macromol. 2023;231:123308. doi: 10.1016/j.ijbiomac.2023.123308
- Wu S, Xu R, Duan B, Jiang P. Three-dimensional hyaluronic acid hydrogel-based models for in vitro human iPSC-derived npc culture and differentiation. J Mater Chem B Mater Biol Med. 2017;5:3870-3878. doi: 10.1039/C7TB00721C
- Zeltz C, Gullberg D. The integrin-collagen connection--a glue for tissue repair? J Cell Sci. 2016;129(4):653-664. doi: 10.1242/jcs.180992
- Randriamanantsoa S, Papargyriou A, Maurer HC, et al. Spatiotemporal dynamics of self-organized branching in pancreas-derived organoids. Nat Commun. 2022;13:5219. doi: 10.1038/s41467-022-32806-y
- Sarrigiannidis SO, Rey JM, Dobre O, González-García C, Dalby MJ, Salmeron-Sanchez M. A tough act to follow: Collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater Today Bio. 2021;10:100098. doi: 10.1016/j.mtbio.2021.100098
- Gupta AK, Coburn JM, Davis-Knowlton J, Kimmerling E, Kaplan DL, Oxburgh L. Scaffolding kidney organoids on silk. J Tissue Eng Regen Med. 2019;13:812-822. doi: 10.1002/term.2830
- D’souza AA, Shegokar R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257-1275. doi: 10.1080/17425247.2016.1182485
- Klotz BJ, Oosterhoff LA, Utomo L, et al. A versatile biosynthetic hydrogel platform for engineering of tissue analogues. Adv Healthc Mater. 2019;8:e1900979. doi: 10.1002/adhm.201900979
- Guo H, Mussault C, Marcellan A, Hourdet D, Sanson N. Hydrogels with dual thermoresponsive mechanical performance. Macromol Rapid Commun. 2017;38:1700287. doi: 10.1002/marc.201700287
- Navaei A, Truong D, Heffernan J, et al. PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering. Acta Biomater. 2016;32:10-23. doi: 10.1016/j.actbio.2015.12.019
- Li X, Zhou J, Liu Z, et al. A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials. 2014;35:5679-5688. doi: 10.1016/j.biomaterials.2014.03.067
- Sun W, Zhang J, Qin Y, et al. A simple and efficient strategy for preparing a cell‐spheroid‐based Bioink. Adv Healthc Mater. 2022;11(15):e2200648. doi: 10.1002/adhm.202200648
- Liu K, Wiendels M, Yuan H, Ruan C, Kouwer PHJ. Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioact Mater. 2022;9:316-331. doi: 10.1016/j.bioactmat.2021.08.002
- Liu K, Mihaila SM, Rowan A, Oosterwijk E, Kouwer PHJ. Synthetic extracellular matrices with nonlinear elasticity regulate cellular organization. Biomacromolecules. 2019;20:826-834. doi: 10.1021/acs.biomac.8b01445
- Maru Y, Tanaka N, Itami M, Hippo Y. Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. Gynecol Oncol. 2019;154:189-198. doi: 10.1016/j.ygyno.2019.05.005
- Pinto AR, Ilinykh A, Ivey MJ, et al. Revisiting Cardiac Cellular Composition. Circ Res. 2016;118:400-409. doi: 10.1161/CIRCRESAHA.115.307778
- Capulli AK, MacQueen LA, Sheehy SP, Parker KK. Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev. 2016;96:83-102. doi: 10.1016/j.addr.2015.11.020
- Derrick CJ, Noël ES. The ECM as a driver of heart development and repair. Development. 2021;148:dev191320. doi: 10.1242/dev.191320
- Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45-59. doi: 10.1016/j.biomaterials.2016.09.003
- Lu K, Seidel T, Cao-Ehlker X, et al. Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium. Theranostics. 2021;11:6138-6153. doi: 10.7150/thno.54999
- Palikuqi B, Nguyen DHT, Li G, et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature. 2020;585:426-432. doi: 10.1038/s41586-020-2712-z
- Augustin HG, Koh GY. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science. 2017;357:eaal2379. doi: 10.1126/science.aal2379
- O’Connor C, Brady E, Zheng Y, Moore E, Stevens KR. Engineering the multiscale complexity of vascular networks. Nat Rev Mater. 2022;7:702-716. doi: 10.1038/s41578-022-00447-8
- Herbert SP, Stainier DYR. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol. 2011;12:551-564. doi: 10.1038/nrm3176
- Orge ID, Nogueira Pinto H, Silva MA, et al. Vascular units as advanced living materials for bottom-up engineering of perfusable 3D microvascular networks. Bioact Mater. 2024;38:499-511. doi: 10.1016/j.bioactmat.2024.05.021
- Enrico A, Voulgaris D, Östmans R, et al. 3D microvascularized tissue models by laser-based cavitation molding of collagen. Adv Mater. 2022;34:e2109823. doi: 10.1002/adma.202109823
- Vazquez-Armendariz AI, Tata PR. Recent advances in lung organoid development and applications in disease modeling. J Clin Invest. 2023;133:e170500. doi: 10.1172/JCI170500
- Chen YW, Huang SX, De Carvalho ALR, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol. 2017;19:542-549. doi: 10.1038/ncb3510
- Stocks J, Hislop A, Sonnappa S. Early Lung development: Lifelong effect on respiratory health and disease. Lancet Respir Med. 2013;1:728-742. doi: 10.1016/S2213-2600(13)70118-8
- Tan Q, Choi KM, Sicard D, Tschumperlin DJ. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials. 2017;113:118-132. doi: 10.1016/j.biomaterials.2016.10.046
- Loebel C, Weiner AI, Eiken MK, et al. Microstructured hydrogels to guide self-assembly and function of lung alveolospheres. Adv Mater. 2022;34:2202992. doi: 10.1002/adma.202202992
- Dye BR, Decker JT, Hein RFC, et al. Human lung organoid culture in alginate with and without matrigel to model development and disease. Tissue Eng Part A. 2022;28:893-906. doi: 10.1089/ten.TEA.2022.0054
- Cheng LK, O’Grady G, Du P, Egbuji JU, Windsor JA, Pullan AJ. Gastrointestinal system. Wiley Interdiscip Rev Syst Biol Med. 2010;2:65-79. doi: 10.1002/wsbm.19
- Lake JI, Heuckeroth RO. Enteric nervous system development: Migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol. 2013;305:G1-G24. doi: 10.1152/ajpgi.00452.2012
- Kim TH, Shivdasani RA. Stomach development, stem cells and disease. Development. 2016;143:554-565. doi: 10.1242/dev.124891
- Soybel DI. Anatomy and physiology of the stomach. Surg Clin North Am. 2005;85:875-894. doi: 10.1016/j.suc.2005.05.009
- McCracken KW, Wells JM. Mechanisms of embryonic stomach development. Semin Cell Dev Biol. 2017;66:36-42. doi: 10.1016/j.semcdb.2017.02.004
- Rothenberg ME, Mishra A, Brandt EB, Hogan SP. Gastrointestinal eosinophils. Immunol Rev. 2001;179:139-155. doi: 10.1034/j.1600-065X.2001.790114.x
- Kim S, Min S, Choi YS, et al. Tissue extracellular matrix hydrogels as alternatives to matrigel for culturing gastrointestinal organoids. Nat Commun. 2022;13:1692. doi: 10.1038/s41467-022-29279-4
- Prior N, Inacio P, Huch M. Liver organoids: From basic research to therapeutic applications. Gut. 2019;68:2228-2237. doi: 10.1136/gutjnl-2019-319256
- Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18:175-189. doi: 10.1016/j.devcel.2010.01.011
- Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14:561-574. doi: 10.1016/j.stem.2014.04.010
- Sun L, Hui L. Progress in human liver organoids. J Mol Cell Biol. 2020;12:607-617. doi: 10.1093/jmcb/mjaa013
- Bhatia SN, Underhill GH, Zaret KS, Fox IJ. Cell and tissue engineering for liver disease. Sci Transl Med. 2014;6:245sr2. doi: 10.1126/scitranslmed.3005975
- Wang Y, Liu H, Zhang M, Wang H, Chen W, Qin J. One-step synthesis of composite hydrogel capsules to support liver organoid generation from hiPSCs. Biomater Sci. 2020;8:5476-5488. doi: 10.1039/D0BM01085E
- Little MH, McMahon AP. Mammalian kidney development: Principles, progress, and projections. Cold Spring Harb Perspect Biol. 2012;4:a008300. doi: 10.1101/cshperspect.a008300
- Young MD, Mitchell TJ, Vieira Braga FA, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science. 2018;361:594-599. doi: 10.1126/science.aat1699
- Nam SA, Seo E, Kim JW, et al. Graft immaturity and safety concerns in transplanted human kidney organoids. Exp Mol Med. 2019;51:1-13. doi: 10.1038/s12276-019-0336-x
- Nerger BA, Sinha S, Lee NN, et al. 3D hydrogel encapsulation regulates nephrogenesis in kidney organoids. Adv Mater. 2024;36:e2308325. doi: 10.1002/adma.202308325
- Garreta E, Moya-Rull D, Marco A, et al. Natural hydrogels support kidney organoid generation and promote in vitro angiogenesis. Adv Mater. 2024;36:e2400306. doi: 10.1002/adma.202400306
- Lenroot RK, Giedd JN. Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30:718-729. doi: 10.1016/j.neubiorev.2006.06.001
- Collin G, Van Den Heuvel MP. The ontogeny of the human connectome: Development and dynamic changes of brain connectivity across the life span. Neuroscientist. 2013;19:616-628. doi: 10.1177/1073858413503712
- Mattei D, Pietrobelli A. Micronutrients and brain development. Curr Nutr Rep. 2019;8:99-107. doi: 10.1007/s13668-019-0268-z
- Kalia M. Brain development: Anatomy, connectivity, adaptive plasticity, and toxicity. Metabolism. 2008;57:S2-S5. doi: 10.1016/j.metabol.2008.07.009
- Isik M, Okesola BO, Eylem CC, et al. Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids. Acta Biomater. 2023;171:223-238. doi: 10.1016/j.actbio.2023.09.040
- Cho AN, Jin Y, An Y, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12:4730. doi: 10.1038/s41467-021-24775-5
- Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders. Dev Neurobiol. 2017;77:810-829. doi: 10.1002/dneu.22455
- Freeman MR. Specification and morphogenesis of astrocytes. Science. 2010;330:774-778. doi: 10.1126/science.1190928
- Aisenbrey EA, Murphy WL. Synthetic alternatives to matrigel. Nat Rev Mater. 2020;5:539-551. doi: 10.1038/s41578-020-0199-8
- Chooi WH, Ng CY, Ow V, et al. Defined alginate hydrogels support spinal cord organoid derivation, maturation, and modeling of spinal cord diseases. Adv Healthc Mater. 2023;12:e2202342. doi: 10.1002/adhm.202202342
- Wang Z, Liu R, Liu Y, et al. Human placenta decellularized extracellular matrix hydrogel promotes the generation of human spinal cord organoids with dorsoventral organization from human induced pluripotent stem cells. ACS Biomater Sci Eng. 2024;10:3218-3231. doi: 10.1021/acsbiomaterials.4c00067
- Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000;16:191-220. doi: 10.1146/annurev.cellbio.16.1.191.2000
- Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20:291-302. doi: 10.1007/s10456-017-9541-1
- Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332-336. doi: 10.1038/nature01657
- Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone organoids: Recent advances and future challenges. Adv Healthc Mater. 2023;13:e2302088. doi: 10.1002/adhm.202302088
- Lin Z, Zhao Y, Chu PK, et al. A functionalized TiO2/ Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials. 2019;219:119372. doi: 10.1016/j.biomaterials.2019.119372
- Lee J, Lee S, Ahmad T, et al. Human adipose-derived stem cell spheroids incorporating platelet-derived growth factor (PDGF) and bio-minerals for vascularized bone tissue engineering. Biomaterials. 2020;255:120192. doi: 10.1016/j.biomaterials.2020.120192
- Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022;288:121741. doi: 10.1016/j.biomaterials.2022.121741
- Wang J, Wu Y, Li G, et al. Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks. Adv Mater. 2024;36:e2309875. doi: 10.1002/adma.202309875
- Shen C, Wang J, Li G, et al. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Bioact Mater. 2024;35:429-444. doi: 10.1016/j.bioactmat.2024.02.016
- Yang Z, Wang B, Liu W, et al. In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units. Bioact Mater. 2023;27:200-215. doi: 10.1016/j.bioactmat.2023.04.002
- Curvello R, Alves D, Abud HE, Garnier G. A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids. Mater Sci Eng C Mater Biol Appl. 2021;124:112051. doi: 10.1016/j.msec.2021.112051
- Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol. 2017;21:23-48. doi: 10.1016/j.ejpn.2016.07.007
- Sampaziotis F, Muraro D, Tysoe OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science. 2021;371:839-846. doi: 10.1126/science.aaz6964
- LeSavage BL, Suhar RA, Broguiere N, Lutolf MP, Heilshorn SC. Next-generation cancer organoids. Nat Mater. 2022;21:143-159. doi: 10.1038/s41563-021-01057-5
- Andrews MG, Kriegstein AR. Challenges of organoid research. Annu Rev Neurosci. 2022;45:23-39. doi: 10.1146/annurev-neuro-111020-090812
- Hossain MK, Kim HR, Chae HJ. Aging phenotype in AD brain organoids: Track to success and challenges. Ageing Res Rev. 2024;96:102256. doi: 10.1016/j.arr.2024.102256