Organoid research: Theory, technology, and therapeutics

Organoids are 3D cellular constructs formed through in vitro assembly and stem cell self-organization, recapitulating key features of human tissues with physiological relevance far exceeding traditional 2D cultures and animal models. Their ability to mimic tissue-specific architecture, cellular diversity, and functional dynamics has driven transformative advances in biomedical research, spanning disease modeling, drug discovery, and regenerative medicine. In recent years, significant progress in organoid technology has been achieved, driven by innovations such as organoid bioprinting, highlighting the need for a dedicated academic platform. In response, we established Organoid Research, a journal committed to advancing this rapidly evolving field through the publication of high-impact research. In this inaugural perspective article, we provide a comprehensive overview of future trends in organoid research, emphasizing the integration of materiobiology-driven organoid construction and emerging technologies, such as 3D bioprinting, artificial intelligence, and assembloid technologies. We also explore the translational potential of organoids in personalized medicine, focusing on their therapeutic applications. This perspective emphasizes the importance of interdisciplinary collaboration to accelerate the clinical translation and widespread application of organoids.
- Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primers. 2022;2:94. doi: 10.1038/s43586-022-00174-y
- Porter RJ, Murray GI, McLean MH. Current concepts in tumour-derived organoids. Br J Cancer. 2020;123:1209-1218. doi: 10.1038/s41416-020-0993-5
- Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Tar. 2022;7:336. doi: 10.1038/s41392-022-01194-6
- Zhang C, Jing Y, Wang J, et al. Skeletal organoids. Biomater Transl. 2024;5:390-410. doi: 10.12336/biomatertransl.2024.04.005
- Tahara S, Rentsch S, Faria FCC, et al. Three-dimensional models: From cell culture to Patient-Derived Organoid and its application to future liposarcoma research. Oncol Res. 2025;33:1-13. doi: 10.32604/or.2024.053635.
- Li J, Li Y, Song G, et al. Revolutionizing cardiovascular research: Human organoids as a Beacon of hope for understanding and treating cardiovascular diseases. Mater Today Bio. 2025;30:101396. doi: 10.1016/j.mtbio.2024.101396
- Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19:671-687. doi: 10.1038/s41576-018-0051-9
- Roth JG, Brunel LG, Huang MS, et al. Spatially controlled construction of assembloids using bioprinting. Nat Commun. 2023;14:4346. doi: 10.1038/s41467-023-40006-5
- Quintard C, Tubbs E, Jonsson G, et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat Commun. 2024;15:1452. doi: 10.1038/s41467-024-45710-4
- Cho AN, Jin Y, An Y, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12:4730.
- Frenz-Wiessner S, Fairley SD, Buser M, et al. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods. 2024;21:868-881. doi: 10.1038/s41592-024-02172-2
- Bartfeld S, Bayram T, Van de Wetering M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 2015;148:126.e6-136.e6. doi: 10.1053/j.gastro.2014.09.042
- Jacob F, Salinas RD, Zhang DY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter-and intra-tumoral heterogeneity. Cell. 2020;180:188- 204.e122. doi: 10.1016/j.cell.2019.11.036
- Kopper O, De Witte CJ, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra-and interpatient heterogeneity. Nat Med. 2019;25:838-849. doi: 10.1038/s41591-019-0422-6
- Achberger K, Probst C, Haderspeck J, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. Elife. 2019;8:e46188. doi: 10.7554/eLife.46188
- Han X, Cai C, Deng W, et al. Landscape of human organoids: Ideal model in clinics and research. Innovation (Camb). 2024;5:100620. doi: 10.1016/j.xinn.2024.100620
- Bock C, Boutros M, Camp JG, et al. The organoid cell atlas. Nat Biotechnol. 2021;39:13-17. doi: 10.1038/s41587-020-00762-x
- Zhang S, Wan Z, Kamm RD. Vascularized organoids on a chip: Strategies for engineering organoids with functional vasculature. Lab Chip. 2021;21:473-488. doi: 10.1039/D0LC01186J
- Weng G, Tao J, Liu Y, et al. Organoid: Bridging the gap between basic research and clinical practice. Cancer Lett. 2023;572:216353. doi: 10.1016/j.canlet.2023.216353
- Ranga A, Gjorevski N, Lutolf MP. Drug discovery through stem cell-based organoid models. Adv Drug Deliv Rev. 2014;69:19-28. doi: 10.1016/j.addr.2014.02.006
- Nirmalanandhan VS, Sittampalam GS. Stem cells in drug discovery, tissue engineering, and regenerative medicine: Emerging opportunities and challenges. J Biomol Screen. 2009;14:755-768. doi: 10.1177/1087057109336591
- Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB. Bioengineering approaches for the advanced organoid research. Adv Mater. 2021;33:2007949. doi: 10.1002/adma.202007949
- Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19:671-687. doi: 10.1038/s41576-018-0051-9
- Renner H, Schöler HR, Bruder JM. Combining automated organoid workflows with artificial intelligence‐based analyses: Opportunities to build a new generation of interdisciplinary high‐throughput screens for Parkinson’s disease and beyond. Mov Disord. 2021;36:2745-2762. doi: 10.1002/mds.28775
- Wilson HV. A new method by which sponges may be artificially reared. Science. 1907;25:912-915. doi: 10.1126/science.25.649.912
- Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262-265. doi: 10.1038/nature07935
- Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51-56. doi: 10.1038/nature09941
- Lancaster MA, Takata N, Ishibashi H, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373-379. doi: 10.1038/nature12517
- Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481-484. doi: 10.1038/nature12271
- Taguchi A, Kaku Y., Ohmori T, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53-67. doi: 10.1016/j.stem.2013.11.010
- Lee J, Rabbani CC, Gao H, et al. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature. 2020;582:399-404. doi: 10.1038/s41586-020-2352-3
- Guo X, Liu B, Zhang Y, et al. Decellularized extracellular matrix for organoid and engineered organ culture. J Tissue Eng. 2024;15:20417314241300386. doi: 10.1177/20417314241300386
- Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Commun Biol. 2021;4:1387. doi: 10.1038/s42003-021-02910-8
- Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020;5:539-551. doi: 10.1038/s41578-020-0199-8
- Soliman BG, Nguyen AK, Gooding JJ, Kilian KA. Advancing synthetic hydrogels through nature‐inspired materials chemistry. Adv Mater. 2024;36:2404235. doi: 10.1002/adma.202404235
- Li Y, Xiao Y, Liu C. The horizon of materiobiology: A perspective on material-guided cell behaviors and tissue engineering. Chem Rev. 2017;117:4376-4421. doi: 10.1021/acs.chemrev.6b00654
- Gan Z, Qin X, Liu H, Liu J, Qin, J. Recent advances in defined hydrogels in organoid research. Bioact Mater. 2023;28: 386-401. doi: 10.1016/j.bioactmat.2023.06.004
- Li C, An N, Song Q, et al. Enhancing organoid culture: Harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci. 2024;31:96. doi: 10.1186/s12929-024-01086-7
- Ohnsorg ML, Hushka EA, Anseth KS. Photoresponsive chemistries for user-directed hydrogel network modulation to investigate cell-matrix interactions. Acc Chem Res. 2109;252. doi: 10.1021/acs.accounts.4c00548
- Joshi N, Yan J, Levy S, et al. Towards an arthritis flare-responsive drug delivery system. Nat Commun. 2018;9:1275. doi: 10.1038/s41467-018-03691-1
- Sheng Y, Gao J, Yin ZZ, Kang J, Kong Y. Dual-drug delivery system based on the hydrogels of alginate and sodium carboxymethyl cellulose for colorectal cancer treatment. Carbohydr Polym. 2021;269:118325. doi: 10.1016/j.carbpol.2021.118325
- Kim YE, Choi SW, Kim MK, Nguyen TL, Kim J. Therapeutic hydrogel patch to treat atopic dermatitis by regulating oxidative stress. Nano Lett. 2022;22:2038-2047. doi: 10.1021/acs.nanolett.1c04899
- Mohamed MA, Fallahi A, El-Sokkary AMA, et al. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci. 2019;98:101147. doi: 10.1016/j.progpolymsci.2019.101147
- Liu H, Wang Y, Cui K, Guo Y, Zhang X, Qin J. Advances in hydrogels in organoids and organs‐on‐a‐chip. Adv Mater. 2019;31:1902042. doi: 10.1002/adma.201902042
- Wu S, Wu X, Wang X, Su J. Hydrogels for bone organoid construction: From a materiobiological perspective. J Mater Sci Technol. 2023;136:21-31. doi: 10.1016/j.jmst.2022.07.008
- Takahashi T. Organoids for drug discovery and personalized medicine. Annu Rev Pharmacol Toxicol. 2019;59:447-462. doi: 10.1146/annurev-pharmtox-010818-021108
- Lindeboom RG, Van Voorthuijsen L, Oost KC, et al. Integrative multi‐omics analysis of intestinal organoid differentiation. Mol Syst Biol. 2018;14:e8227. doi: 10.15252/msb.20188227
- Shinde SS, Mate GD, Mali SS, Naikwadi ND, Abuzar M, Sarkate AP. Systems biology approaches for autoimmune diseases. In: Systems biology approaches: Prevention, diagnosis, and understanding mechanisms of complex diseases. Germany: Springer Nature; 2024. p. 299-319.
- Zhang W, Li J, Zhou J, Rastogi A, Ma S. Translational organoid technology-the convergence of chemical, mechanical, and computational biology. Trends Biotechnol. 2022;40: 1121-1135. doi: 10.1016/j.tibtech.2022.03.003
- Del Sol A, Jung S. The importance of computational modeling in stem cell research. Trends Biotechnol. 2021;39:126-136. doi: 10.1016/j.tibtech.2020.07.006
- Vorontsov E, Bozkurt A, Casson A, et al. A foundation model for clinical-grade computational pathology and rare cancers detection. Nat Med. 2024;30:2924-2935. doi: 10.1038/s41591-024-03141-0
- Qin X, Tape CJ. Deciphering organoids: High-dimensional analysis of biomimetic cultures. Trends Biotechnol. 2021;39:774-787. doi: 10.1016/j.tibtech.2020.10.013
- Bannier-Hélaouët M, Post Y, Korving J, et al. Exploring the human lacrimal gland using organoids and single-cell sequencing. Cell Stem Cell. 2021;28:1221-1232.e1227. doi: 10.1016/j.stem.2021.02.024
- Li C, Fleck JS, Martins-Costa C, et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature. 2023;621:373-380. doi: 10.1038/s41586-023-06473-y
- Serra D, Mayr U, Boni A, et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 2019;569:66-72. doi: 10.1038/s41586-019-1146-y
- Qin X, Sufi J, Vlckova P, et al. Cell-type-specific signaling networks in heterocellular organoids. Nat Methods. 2020;17:335-342. doi: 10.1038/s41592-020-0737-8
- Osonoi S, Takebe T. Organoid-guided precision hepatology for metabolic liver disease. J Hepatol. 2024;80:805-821. doi: 10.1016/j.jhep.2024.01.002
- Bhatia S, Kramer M, Russo S, et al. Patient-derived triple-negative breast cancer organoids provide robust model systems that recapitulate tumor intrinsic characteristics. Cancer Res. 2022;82:1174-1192. doi: 10.1158/0008-5472.CAN-21-2807
- Brancati G, Treutlein B, Camp JG. Resolving neurodevelopmental and vision disorders using organoid single-cell multi-omics. Neuron. 2020;107:1000-1013. doi: 10.1016/j.neuron.2020.09.001
- Cai H, Ao Z, Tian C, et al. Brain organoid reservoir computing for artificial intelligence. Nat Electron. 2023;6:1032-1039. doi: 10.1038/s41928-023-01069-w
- Du X, Chen Z, Li Q, et al. Organoids revealed: Morphological analysis of the profound next generation in-vitro model with artificial intelligence. Biodes Manuf. 2023;6:319-339. doi: 10.1007/s42242-022-00226-y
- Maramraju S, Kowalczewski A, Kaza A, et al. AI‐organoid integrated systems for biomedical studies and applications. Bioeng Transl Med. 2024;9:e10641. doi: 10.1002/btm2.10641
- Bai L, Wu Y, Li G, Zhang W, Zhang H, Su J. AI-enabled organoids: Construction, analysis, and application. Bioact Mater. 2024;31:525-548. doi: 10.1016/j.bioactmat.2023.09.005
- Mishra P, Varadharajan V, Tupakula U, Pilli ES. A detailed investigation and analysis of using machine learning techniques for intrusion detection. IEEE Commun Surv Tutorials. 2018;21:686-728. doi: 10.1109/COMST.2018.2847722
- Kong J, Lee H, Kim D, et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun. 2020;11:5485. doi: 10.1038/s41467-020-19313-8
- Lonini LS, Khare TD, Lopez SS, et al. Deep learning-enabled dynamic infiltration and response to NK therapies in solid tumor organoids. Cancer Res. 2024;84:2319-2319.
- Wang H, Li X, You X, Zhao G. Harnessing the power of artificial intelligence for human living organoid research. Bioact Mater. 2024;42:140-164. doi: 10.1016/j.bioactmat.2024.08.027
- Tebon PJ, Wang B, Markowitz AL, et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat Commun. 2023;14:3168. doi: 10.1038/s41467-023-38832-8
- Pati F, Gantelius J, Svahn HA. 3D bioprinting of tissue/organ models. Angew Chem Int Ed. 2016;55:4650-4665. doi: 10.1002/anie.201505062
- Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312-319. doi: 10.1038/nbt.3413
- Wang F, Song P, Wang J, et al. Organoid bioinks: Construction and application. Biofabrication. 2024;16:032006. doi: 10.1088/1758-5090/ad467c
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773-785. doi: 10.1038/nbt.2958
- O’Connor C, Brady E, Zheng Y, Moore E, Tevens KR. Engineering the multiscale complexity of vascular networks. Nat Rev Mater. 2022;7:702-716. doi: 10.1038/s41578-022-00447-8
- Werschler N, Quintard C, Nguyen S, Penninger J. Engineering next generation vascularized organoid. Atherosclerosis. 2024;398:118529. doi: 10.1016/j.atherosclerosis.2024.118529
- Wang J, Zhou D, Li R, et al. Protocol for engineering bone organoids from mesenchymal stem cells. Bioact Mater. 2025;45:388-400. doi: 10.1016/j.bioactmat.2024.11.017
- Dekkers JF, Alieva M, Wellens LM, et al. High-resolution 3D imaging of fixed and cleared organoids. Nat Protoc. 2019;14:1756-1771. doi: 10.1038/s41596-019-0160-8
- Rios AC, Clevers H. Imaging organoids: A bright future ahead. Nat Methods. 2018;15:24-26. doi: 10.1038/nmeth.4537
- Roh TT, Alex A, Chandramouleeswaran PM, et al. Predicting DNA damage response in non-small cell lung cancer organoids via simultaneous label-free autofluorescence multiharmonic microscopy. Redox Biol. 2024;75:103280. doi: 10.1016/j.redox.2024.103280
- Yildirim M, Delepine C, Feldman D, et al. Label-free three-photon imaging of intact human cerebral organoids for tracking early events in brain development and deficits in Rett syndrome. Elife. 2022;11:e78079. doi: 10.7554/eLife.78079
- Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev. 2023;201:115074. doi: 10.1016/j.addr.2023.115074
- Walsh AJ, Cook RS, Skala MC. Functional optical imaging of primary human tumor organoids: Development of a personalized drug screen. J Nucl Med. 2017;58:1367-1372. doi: 10.2967/jnumed.117.192534
- Beghin A, Grenci G, Sahni G, et al. Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification. Nat Methods. 2022;19:881-892. doi: 10.1038/s41592-022-01508-0
- Hendriks D, Artegiani B, Hu H, Chuva de Sousa Lopes S, Clevers H. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver. Nat Protoc. 2021;16:182-217. doi: 10.1038/s41596-020-00411-2
- Thorel L, Perréard M, Florent R, et al. Patient-derived tumor organoids: A new avenue for preclinical research and precision medicine in oncology. Exp Mol Med. 2024;56: 1531-1551. doi: 10.1038/s12276-024-01272-5
- Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21:256-262. doi: 10.1038/nm.3802
- Chen F, Lian M, Ma B, et al. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Commun Biol. 2022;5:1163. doi: 10.1038/s42003-022-04152-8
- Zafra MP, Schatoff EM, Katti A, et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol. 2018;36:888-893. doi: 10.1038/nbt.4194
- Fujii M, Matano M, Nanki K, Sato T. Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc. 2015;10:1474-1485. doi: 10.1038/nprot.2015.088
- Schmidt S. Autism in three dimensions: Using brain organoids to study potential gene-environment interactions. Environ Health Perspect. 2021;129:104003. doi: 10.1289/EHP10301
- Menche C, Farin HF. Strategies for genetic manipulation of adult stem cell-derived organoids. Exp Mol Med. 2021;53:1483-1494. doi: 10.1038/s12276-021-00609-8
- Kim GA, Ginga NJ, Takayama S. Integration of sensors in gastrointestinal organoid culture for biological analysis. Cell Mol Gastroenterol Hepatol. 2018;6:123-131.e121. doi: 10.1016/j.jcmgh.2018.03.002
- Le Floch P, Li Q, Lin Z, et al. Stretchable mesh nanoelectronics for 3D single‐cell chronic electrophysiology from developing brain organoids. Adv Mater. 2022;34:2106829. doi: 10.1002/adma.202106829
- Yin J, Lees JG, Gong S, et al. Real-time electro-mechanical profiling of dynamically beating human cardiac organoids by coupling resistive skins with microelectrode arrays. Biosensors Bioelectron. 2025;267:116752. doi: 10.1016/j.bios.2024.116752
- Schaumann EN., Tian B. Biological interfaces, modulation, and sensing with inorganic nano‐bioelectronic materials. Small Methods. 2020;4:1900868. doi: 10.1002/smtd.201900868
- Costanzo M, Cutrona C, Leodori C, et al. Exploring easily accessible neurophysiological biomarkers for predicting Alzheimer’s disease progression: A systematic review. Alzheimers Res Ther. 2024;16:244. doi: 10.1186/s13195-024-01607-4
- Liu H, Gan Z, Qin X, Wang Y, Qin J. Advances in microfluidic technologies in organoid research. Adv Healthc Mater. 2024;13:2302686. doi: 10.1002/adhm.202302686
- Vogt N. Assembloids. Nat Methods. 2021;18:27. doi: 10.1038/s41592-020-01026-x
- Miura Y, Li MY, Revah O, Yoon SJ, Narazaki G, Pașca SP. Engineering brain assembloids to interrogate human neural circuits. Nat Protoc. 2022;17:15-35. doi: 10.1038/s41596-021-00632-z
- Günther C, Winner B, Neurath MF, Stappenbeck TS. Organoids in gastrointestinal diseases: From experimental models to clinical translation. Gut. 2022;71:1892-1908. doi: 10.1136/gutjnl-2021-326560
- Andersen J, Revah O, Miura Y, et al. Generation of functional human 3D cortico-motor assembloids. Cell. 2020;183:1913- 1929.e1926. doi: 10.1016/j.cell.2020.11.017
- Pașca SP, Arlotta P, Bateup HS, et al. A framework for neural organoids, assembloids and transplantation studies. Nature. 2024;639:315-320. doi: 10.1038/s41586-024-08487-6
- Xu X, Gao Y, Dai J, et al. Gastric cancer assembloids derived from patient‐derived xenografts: A preclinical model for therapeutic drug screening. Small Methods. 2024;8:2400204. doi: 10.1002/smtd.202400204
- Zhang Y, Hu Q, Pei Y, et al. A patient-specific lung cancer assembloid model with heterogeneous tumor microenvironments. Nat Commun. 2024;15:3382. doi: 10.1038/s41467-024-47737-z
- Wu S, Hong Y, Chu C, et al. Construction of human 3D striato-nigral assembloids to recapitulate medium spiny neuronal projection defects in Huntington’s disease. Proc Natl Acad Sci. 2024;121:e2316176121. doi: 10.1073/pnas.2316176121
- Bai L, Zhou D, Li G, Liu J, Chen X, Jiacan S. Engineering bone/cartilage organoids: Strategy, progress, and application. Bone Res. 2024;12:66. doi: 10.1038/s41413-024-00376-y
- Nero C, Vizzielli G, Lorusso D, et al. Patient-derived organoids and high grade serous ovarian cancer: From disease modeling to personalized medicine. J Exp Clin Cancer Res. 2021;40:1-14. doi: 10.1186/s13046-021-01917-7
- Grenier K, Kao J, Diamandis P. Three-dimensional modeling of human neurodegeneration: Brain organoids coming of age. Mol Psychiatry. 2020;25:254-274. doi: 10.1038/s41380-019-0500-7
- Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc. 2020;15:3380-3409. doi: 10.1038/s41596-020-0379-4
- Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13:4. doi: 10.1186/s13045-019-0829-z
- Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173:515-528.e517. doi: 10.1016/j.cell.2018.03.017
- Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23:1424-1435. doi: 10.1038/nm.4438
- Park JC, Jang SY, Lee D, et al. A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nat Commun. 2021;12:280. doi: 10.1038/s41467-020-20440-5
- Jin Y, Li F, Li Z, et al. Modeling Lewy body disease with SNCA triplication iPSC-derived cortical organoids and identifying therapeutic drugs. Sci Adv. 2024;10:eadk3700. doi: 10.1126/sciadv.adk3700
- Hu W, Lazar MA. Modelling metabolic diseases and drug response using stem cells and organoids. Nat Rev Endocrinol. 2022;18:744-759. doi: 10.1038/s41574-022-00733-z
- Jin Y, Kim J, Lee JS, et al. Vascularized liver organoids generated using induced hepatic tissue and dynamic liver‐specific microenvironment as a drug testing platform. Adv Funct Mater. 2018;28:1801954. doi: 10.1002/adfm.201801954
- Xu H, Jiao Y, Qin S, Zhao W, Chu Q, Wu K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol. 2018;7:30. doi: 10.1186/s40164-018-0122-9
- Artegiani B, Van Voorthuijsen L, Lindeboom RGH, et al. Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell. 2019;24:927-943.e926. doi: 10.1016/j.stem.2019.04.017
- Nakamura T, Sato T. Advancing intestinal organoid technology toward regenerative medicine. Cell Mol Gastroenterol Hepatol. 2018;5:51-60. doi: 10.1016/j.jcmgh.2017.10.006
- Nuciforo S, Heim MH. Organoids to model liver disease. JHEP Rep. 2021;3:100198. doi: 10.1016/j.jhepr.2020.100198
- Lewis-Israeli YR, Wasserman AH, Gabalski MA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun. 2021;12:5142. doi: 10.1038/s41467-021-25329-5
- Wang J, Chen X, Li R, et al. Standardization and consensus in the development and application of bone organoids. Theranostics. 2025;15:682. doi: 10.7150/thno.105840
- Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: A perspective on construction and application. Bioact Mater. 2022;18:15-25. doi: 10.1016/j.bioactmat.2022.01.048
- Wang J, Wu Y, Li G, et al. Engineering large‐scale self‐mineralizing bone organoids with bone matrix‐inspired hydroxyapatite hybrid bioinks. Adv Mater. 2024;36:e2309875. doi: 10.1002/adma.202309875
- Kupfer ME, Lin WH, Ravikumar V, et al. In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circulation Res. 2020;127:207-224. doi: 10.1161/CIRCRESAHA.119.316155
- Hu N, Shi JX, Chen C, et al. Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury. Nat Commun. 2024;15:9580. doi: 10.1038/s41467-024-53858-2
- Li Y, Yang L, Hou Y, et al. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact Mater. 2022;18:213-227. doi: 10.1016/j.bioactmat.2022.03.021
- Zhang Q, He J, Zhu D, et al. Genetically modified organoids for tissue engineering and regenerative medicine. Adv Colloid and Interface Sci. 2024;335:103337. doi: 10.1016/j.cis.2024.103337
- Sugimoto S, Kobayashi E, Fujii M, et al. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature. 2021;592:99-104. doi: 10.1038/s41586-021-03247-2
- Corsini NS, Knoblich JA. Human organoids: New strategies and methods for analyzing human development and disease. Cell. 2022;185:2756-2769. doi: 10.1016/j.cell.2022.06.051
- Cerneckis J, Bu G, Shi Y. Pushing the boundaries of brain organoids to study Alzheimer’s disease. Trends Mol Med. 2023;29:659-672. doi: 10.1016/j.molmed.2023.05.007
- Smits LM, Reinhardt L, Reinhardt P, et al. Modeling Parkinson’s disease in midbrain-like organoids. NPJ Parkinsons Dis. 2019;5:5. doi: 10.1038/s41531-019-0078-4
- Dekkers JF, Wiegerinck CL, De Jonge HR, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013;19:939-945. doi: 10.1038/nm.3201
- Chan LL, Anderson DE, Cheng HS, et al. The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat Commun. 2022;13:7635. doi: 10.1038/s41467-022-35253-x
- Puca L, Bareja R, Prandi D, et al. Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun. 2404;9:2404. doi: 10.1038/s41467-018-04495-z
- LeSavage BL, Suhar RA, Broguiere N, Lutolf MP, Heilshorn SC. Next-generation cancer organoids. Nat Mater. 2022;21:143-159. doi: 10.1038/s41563-021-01057-5
- Lawlor KT, Vanslambrouck JM, Higgins JW. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20: 260-271. doi: 10.1038/s41563-020-00853-9
- Schuster B, Junkin M, Kashaf SS, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat Commun. 2020;11:5271. doi: 10.1038/s41467-020-19058-4
- Brandenberg N, Hoehnel S, Kuttler F, et al. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat Biomed Eng. 2020;4:863-874. doi: 10.1038/s41551-020-0565-2
- Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J, et al. Small joint organoids 3D bioprinting: Construction strategy and application. Small. 2024;20:e2302506. doi: 10.1002/smll.202302506
- Velasco V, Shariati SA, Esfandyarpour R. Microtechnology-based methods for organoid models. Microsyst Nanoeng. 2020;6:76. doi: 10.1038/s41378-020-00185-3
- Andrews MG, Kriegstein AR. Challenges of organoid research. Ann Rev Neurosci. 2022;45:23-39. doi: 10.1146/annurev-neuro-111020-090812
- Chen Z, Sugimura R, Zhang YS, Ruan C, Wen C. Organoids in concert: Engineering in vitro models toward enhanced fidelity. Aggregate. 2024;5:e478. doi: 10.1002/agt2.478
- Shirure VS, Hughes CC, George SC. Engineering vascularized organoid-on-a-chip models. Ann Rev Biomed Eng. 2021;23:141-167. doi: 10.1146/annurev-bioeng-090120-094330
- Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175:1972-1988. e1916. doi: 10.1016/j.cell.2018.11.021
- Schuth S, Le Blanc S, Krieger TG, et al. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system. J Exp Clin Cancer Res. 2022;41:312. doi: 10.1186/s13046-022-02519-7
- Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From tissue and organ development to in vitro models. Chem Rev. 2020;120:10547-10607. doi: 10.1021/acs.chemrev.9b00789
- Bredenoord AL, Clevers H, Knoblich JA. Human tissues in a dish: The research and ethical implications of organoid technology. Science. 2017;355:eaaf9414. doi: 10.1126/science.aaf9414
- Gao M, Ding W, Wang Y, et al. Quantitatively evaluating interactions between patient-derived organoids and autologous immune cells by microfluidic chip. Anal Chem. 2024;96:13061-13069. doi: 10.1021/acs.analchem.4c01389
- Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: Modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer. 2024;24:523-539. doi: 10.1038/s41568-024-00706-6
- Yuki K, Cheng N, Nakano M, Kuo CJ. Organoid models of tumor immunology. Trends Immunol. 2020;41:652-664. doi: 10.1016/j.it.2020.06.010
- Huang L, Holtzinger A, Jagan I, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell-and patient-derived tumor organoids. Nat Med. 2015;21:1364-1371. doi: 10.1038/nm.3973