AccScience Publishing / NSCE / Online First / DOI: 10.36922/NSCE025450017
RESEARCH ARTICLE

Parametric analysis and statistical characterization of extreme events in a minimal Lorenz-like chaotic system

Jianning Huang1* Paul Didier Kamdem Kuate2 Achille Ecladore Tchahou Tchendjeu3
Show Less
1 School of Mathematics and Information Science, Nanchang Normal University, Nanchang, Jiangxi, China
2 Department of Electrical and Power Engineering, Higher Technical Teachers Training College, University of Bamenda, Bambili, Northwest Region, Cameroon
3 Department of Electrical and Electronic Engineering, National Polytechnic Institute, University of Bamenda, Bambili, Northwest Region, Cameroon
Received: 3 November 2025 | Revised: 28 November 2025 | Accepted: 5 December 2025 | Published online: 24 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Extreme events are rare, high-impact phenomena that deviate significantly from nominal behavior, posing significant challenges across both natural and engineered systems, from climate dynamics to neurological conditions. The present study investigates the intricate dynamics and emergence of extreme events in a minimal, nonhyperbolic Lorenz-like chaotic system, characterized by piecewise linear nonlinearities. By leveraging standard nonlinear analysis and statistical tools, we explore how the system parameters govern its dynamical transitions, amplitude control, and propensity for extreme events. For small values of the control parameter, the system exhibits chaotic behavior, characterized by frequent, high-amplitude excursions indicative of extreme events. Statistical analyses of local maxima and inter-event intervals further characterize these events, highlighting their rarity and high magnitude through heavy-tailed probability distributions. The simplicity and controllability of the proposed model make it a valuable tool for theoretical exploration and practical applications in fields such as climate modeling, engineering, and nonlinear dynamics.

Keywords
Amplitude control
Chaotic dynamics
Extreme events
Nonhyperbolic system
Parametric control
Piecewise linear nonlinearity
Funding
None.
Conflict of interest
Paul Didier Kamdem Kuate is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Durairaj P, Kanagaraj S, Kumarasamy S, and Rajagopal K. Emergence of extreme events in a quasiperiodic oscillator. Phys Rev E. 2023;107(2):L022201. https://doi.org/10.1103/PhysRevE.107.L022201

 

  1. Stewart M, Carleton WC, Groucutt HS. Extreme events in biological, societal, and earth sciences: a systematic review of the literature. Front Earth Sci. 2022;10:786829. https://doi.org/10.3389/feart.2022.786829

 

  1. Alvre J, Broska LH, Rubbelke DTG. Studying extreme events: an interdisciplinary review of recent research. Heliyon. 2024;10(24):e41024. https://doi.org/10.1016/j.heliyon.2024.e41024

 

  1. Broska LH, Poganietz W-R, Vogele S. Extreme events defined—a conceptual discussion applying a complex systems approach. Futures. 2020;115:102490. https://doi.org/10.1016/j.futures.2019.102490

 

  1. Zhou X, Li Y, Xiao C, Chen W, Mei M, Wang G. High-impact extreme weather and climate events in China: summer 2024overview. Adv Atmos Sci. 2025;42(6):1064-1076. https://doi.org/10.1007/s00376-024-4462-6

 

  1. Zhao D, Li Y, Xu Y, Liu Q, and Kurths J. Extreme events in a class of nonlinear Duffing-type oscillators with a parametric periodic force. Eur Phys J Plus. 2022;137:314. https://doi.org/10.1140/epjp/s13360-022-02530-z

 

  1. Diffenbaugh NS, Pal JS, Trapp RJ, and Giorgi F. Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci U S A.2005;102(44):15774-15778. https://doi.org/10.1073/pnas.0506042102

 

  1. Penduff T, Serazin G, Leroux S, et al. Chaotic variability of ocean heat content: Climate-relevant features and observational implications. Oceanography. 2018;31(2):63-71. https://doi.org/10.5670/oceanog.2018.210

 

  1. Sura P, Sardeshmukh PD. Reconciling non-Gaussian climate statistics with linear dynamics. J Climate.2008;21(22):5962-5983. https://doi.org/10.1175/2008JCLI2358.1

 

  1. Sale M, Mohammad RG, Amin F. Nonlinear dynamic modeling and chaos analysis of aircraft landing gear under two- and three-point landings. Nonlinear Sci Control Eng.2025;1(1):025280001. https://doi.org/10.36922/NSCE025280001

 

  1. Lorenz EN. Deterministic nonperiodic flow. J Atmos Sci.1963;20(2):130-141.

 

  1. Lorenz EN. The Essence of Chaos. University of Washington Press; 1993.

 

  1. Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. 2nd ed. Westview Press; 2015.

 

  1. Palmer TN. The primacy of doubly stochastic models for climate prediction. Proc Natl Acad Sci U S A.2019;116(23):11195-11200. https://doi.org/10.1016/B978-0-12-473750-1.50009-6

 

  1. Sun KH, Sprott JC. Dynamics of a simplified Lorenz system. Int J Bifurcation Chaos. 2009;19(4):1357-1366. https://doi.org/10.1142/S0218127409023688

 

  1. Liu Y, Yang Q. Dynamics of a new Lorenz-like chaotic system. Nonlinear Anal Real World Appl. 2010;11(4):2563-2572. https://doi.org/10.1016/j.nonrwa.2009.09.001

 

  1. Letellier C, Mendes EMAM, Malasoma J-M. Lorenz-like systems and Lorenz-like attractors: definition, examples, and equivalences. Phys Rev E. 2023;108(4):044209. https://doi.org/10.1103/PhysRevE.108.044209

 

  1. van der Schrier G, Maas LRM. The diffusion less Lorenz equations; Shil’nikov bifurcations and reduction to an explicit map. Physica D. 2000;141(1):19-36. https://doi.org/10.1016/S0167-2789(00)00033-6

 

  1. Dong C-W. Periodic orbits of diffusion less Lorenz system. Acta Phys Sin. 2018; 67(24):240501. https://doi.org/10.7498/aps.67.20181581

 

  1. Sprott JC. Some simple chaotic flows. Phys Rev E.1994;50(2):R647. https://doi.org/10.1103/PhysRevE.50.R647

 

  1. Sprott JC. Simple chaotic systems and circuits. Am J Phys.2000;68(8):758-763. https://doi.org/10.1119/1.19538

 

  1. Sprott JC. Elegant Chaos: Algebraically Simple Chaotic Flows. World Scientific; 2010.

 

  1. Verhulst F, Bakri T. The Sprott B system. Chaos.2024;34(10):103116. https://doi.org/10.1063/5.0212565

 

  1. Kamdem Kuate PD, Lai Q, Fotsin H. Dynamics, synchronization and electronic implementations of a new Lorenz-like chaotic system with nonhyperbolic equilibria. Int J Bifurcation Chaos. 2019;29(14):1950197. https://doi.org/10.1142/S0218127419501979

 

  1. Campos-Canton E, Barajas-Ramirez JG, Solis-Perales G, Femat R. Multi scroll attractors by switching systems. Chaos.2010;20(1):013116. https://doi.org/10.1063/1.3314278

 

  1. Escalante-Gonzalez RJ, Campos-Canton E. Generation of multiscroll attractors without equilibria via piecewise linear systems. Chaos. 2017;27(5):053109. https://doi.org/10.1063/1.4983523

 

  1. Wang N, Sun K, Sprott JC. Generating multi-scroll Chua’sattractors via simplified piecewise-linear Chua’s diode. IEEE Trans Circuits Syst I Regul Pap. 2019;94(12):125203. https://doi.org/10.1109/TCSI.2019.2933365

 

  1. Kuate PD, Tchahou Tchendjeu AE, Fotsin H. A modified Rossler prototype-4 system based on Chua’s dioden on linearity: dynamics, multi stability, multi scroll generation and FPGA implementation. Chaos Solitons Fractals.2020;140:110213. https://doi.org/10.1016/j.chaos.2020.110213

 

  1. Campos-Canton E, Femat R, Chen G. Attractors generated from switching unstable dissipative systems. Chaos.2012;22(1):013121. https://doi.org/10.1063/1.4742338

 

  1. Escalante-Gonzalez RJ, Nicol M. A mono parametric family of piecewise linear systems to generate scroll attractors via path-connected set of polynomials. Int J Bifurcation Chaos.2017;27(13):1750040. https://doi.org/10.1142/S0218127421500346

 

  1. Li C, Sprott JC. Coexisting hidden attractors in a 4D simplified Lorenz system. Int J Bifurcation Chaos. 2014;24(12):1450034. https://doi.org/10.1142/S0218127414500345

 

  1. Ali J, Iqtadar H, Fahimeh N, Seyed Mohammad RHG, Sajad J.A simple guide for plotting a proper bifurcation diagram. Int J Bifurcation Chaos. 2021;31(01):2150011. https://doi.org/10.1142/S0218127421500115

 

  1. Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D.1985;16(3):285-317. https://doi.org/10.1016/0167-2789(85)90011-9

 

  1. Wan Z, Pu Y-F, Lai Q. Memristive feedback-controlled chaotic system with diverse dynamics. Nonlinear Sci Control Eng.2025;1(1):025310008. https://doi.org/10.36922/NSCE025310008

 

  1. Ray A, Mishra A, Ghosh D, Kapitaniak T, Dana SK, Hens C. Extreme events in a network of heterogeneous Josephson junctions. Phys Rev E. 2020;101(3):032209. https://doi.org/10.1103/PhysRevE.101.032209

 

  1. Malik N, Ozturk U. Rare events in complex systems: understanding and prediction. Chaos. 2020;30(9):090401. https://doi.org/10.1063/5.0024145

 

  1. Ahmadi A, Parthasarathy S, Pal N, Rajagopal K, Jafari S, Tlelo-Cuautle E. Extreme multi stability and extreme events in a novel chaotic circuit with hidden attractors. Int J Bifurcation Chaos. 2023;33(7):2330016. https://doi.org/10.1142/S0218127423300161

 

  1. Rao H, Zhao Y, Chen H-P. Predicting chaotic system behavior using machine learning techniques. Nonlinear Sci Control Eng.2025;1(1):025290003. https://doi.org/10.36922/NSCE025290003

 

  1. Wang J-Y, Zhao X-W, Pang D, Liu Z-W. Predefined-time practical containment control for multi-agent systems via event-triggered control. Nonlinear Sci Control Eng.2025;1(1):025290002. https://doi.org/10.36922/NSCE025290002
Share
Back to top
Nonlinear Science and Control Engineering, Published by AccScience Publishing