Complex neuronal dynamics under memristive electromagnetic radiation: Modeling and digital signal processing implementation
The development of artificial neural networks requires breaking through the limitations of traditional models to establish architectures that more closely resemble the real characteristics of biological neural systems. This paper proposes a novel locally active discrete memristor model and incorporates it into a Hopfield neural network to investigate the influence of electromagnetic radiation (EMR) on neuronal dynamics. By employing nonlinear analysis methods, the complex dynamical characteristics of the system are systematically examined, including bifurcation diagrams, Lyapunov exponent spectra, phase trajectories, and firing patterns. The results demonstrate that the system exhibits diverse nonlinear behaviors, including multistability, state transitions, and attractor offset control, under different parameter conditions. Moreover, by adjusting the memristor parameter, flexible regulation of the dynamical states can be achieved. To further validate the feasibility of the proposed model, a digital signal processing-based hardware implementation is designed and tested. The findings not only simulate the intricate dynamical responses of neurons under EMR exposure but also reveal rich nonlinear phenomena, providing potential applications in medical diagnosis and secure image encryption.
- Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science. 2017;357(6355):1033-1036.
- Freeman WJ. Chaos in the brain: Possible roles in biological intelligence. Int J Intell Syst. 1995;10(1):71-88.
- Mahmoudvand S, Ghazavi MR, Farrokhabadi A. Nonlinear dynamic modeling and chaos analysis of aircraft landing gear under two-and three-point landings. Nonlinear Sci Control Eng. 2025;1(1):025280001.
- Hopfield J. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A. 1982;79(8):2554-2558.
- Lin H, Wang C, Deng Q, Xu C, Deng Z, Zhou C. Review on chaotic dynamics of memristive neuron and neural network.Nonlinear Dyn. 2021;106(1):959-973.
- Ma J, Tang J. A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 2017;89(3):1569-1578.
- Anusree M, Pramod P. Understanding chaotic neural networks: A comprehensive review. Nonlinear Dyn. 2025:1-16.
- Di Ventra M, Pershin Y. On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology. 2013;24(25):255201.
- Yang F, Xu Y, Ma J. A memristive neuron and its adaptability to external electric field. Chaos. 2023;33(2). https://doi.org/10.1063/5.0136195
- Xu Q, Chen X, Wu H, Iu HH, Parastesh F, Wang N. ReLU function-based locally active memristor and its application in generating spiking behaviors. IEEE Trans Circuits Syst II Express Briefs. 2024;71(10):4551-4555.
- Ma T, Mou J, Chen W. Dynamics and implementation of a functional neuron model with hyperchaotic behavior under electromagnetic radiation. Chaos Solitons Fractals. 2025;190:115795.
- Zhang S, Li Y, Lu D, Gao X, Li C, Chen G. A novel memristor regulation method for chaos enhancement in unidirectional ring neural networks. IEEE Trans Circuits Syst I Regul Pap. Published online 2025; https://doi.org/10.1109/TCSI.2025.3536028
- Korn H, Faure P. Is there chaos in the brain? II. Experimental evidence and related models. C R Biol. 2003;326(9):787-840.
- Deng Q, Wang C, Yang G, Luo D. Discrete memristive delay feedback Rulkov neuron model: Chaotic dynamics, hardware implementation and application in secure communication. IEEE Internet Things J. 2025;12(13):25559-25567.
- Shi F, Cao Y, Banerjee S, Ahmad A, Mou J. A novel neural networks with memristor coupled memcapacitor-synapse neuron. Chaos Solitons Fractals. 2024;189:115723.
- Liang Y, Liu K, Dong Y, Lu Z, Wang G. Capacitively coupled memristive neurons on the edge of chaos. IEEE Trans Circuits Syst II Express Briefs. 2024;71(8):3950-3954.
- Zhang Z, Gao X, Cao Y, Banerjee S, Mou J. Privacy protection scheme for batch medical images based on double memristor cellular neural network. Nonlinear Dyn. 2025;113(9):10559-10576.
- Lujano-Hernandez L, Munoz-Pacheco J, Sanchez-Gaspariano A. Nonlinear dynamics and experimental realization of a piecewise linear multi-scroll Hopfield neural network with a memristive synapse. Discrete Contin Dyn Syst Ser S. 2025:1937-1632. https://doi.org/10.3934/dcdss.2025097
- Gao S, Ding S, Ho-Ching Iu H, et al. A three-dimensional memristor-based hyperchaotic map for pseudorandom number generation and multi-image encryption. Chaos. 2025;35(7)073105. https://doi.org/10.1063/5.0270220
- Li F, QinW, Xi M, Bai L, Bao B. Plane coexistence behaviors for Hopfield neural network with two-memristor-interconnected neurons. Neural Netw. 2025;183:107049.
- He S, Vignesh D, Rondoni L, Banerjee S. Chaos and multi-layer attractors in asymmetric neural networks coupled with discrete fractional memristor. Neural Netw. 2023;167:572-587.
- Shi F, Cao Y, Banerjee S, Mou J. A neuronal circuit based on a second-order memristor. Nonlinear Dyn. 2025;113(10):12165-12183.
- Chua L. Memristors on ‘edge of chaos’. Nat Rev Electr Eng. 2024;1(9):614-627.
- Gao S, Iu HH-C, Erkan U, et al. A 3D memristive cubic map with dual discrete memristors: design, implementation, and application in image encryption. IEEE Trans Circuits Syst Video Technol. 2025;35(8):7706-7718.
- Guo M, Yang R, Zhang M, Liu R, Zhu Y, Dou G. A novel memcapacitor and its application in a chaotic circuit. Nonlinear Dyn. 2021;105(1):877-886.
- Wan Z, Pu Y-F, Lai Q. Memristive feedback-controlled chaotic system with diverse dynamics. Nonlinear Sci Control Eng. 2025;1(1):025310008.
- Khan MU, Hassan B, Alazzam A, Eissa S, Mohammad B. Brain inspired iontronic fluidic memristive and memcapacitive device for self-powered electronics. Microsyst Nanoeng. 2025;11(1):37.
- Mou J, Cao H, Zhou N, Cao Y. An FHN-HR neuron network coupled with a novel locally active memristor and its DSP implementation. IEEE Trans Cybern. 2024;54(12):7333-7342.
- Mou J, Han Z, Cao Y, Banerjee S. Discrete second-order memristor and its application to chaotic map. IEEE Trans Circuits Syst II Express Briefs. 2024;71(5):2824-2828.
- Qin M, Lai Q, Wang H, Wan Z. Complex dynamics in chain HNN with parameter-relied equilibria and memristive electromagnetic induction. Chaos. 2025;35(2):023123. https://doi.org/10.1063/5.0248515
- Min F, Ji J, Cao Y, Xu Y. Bifurcation dynamics, amplitude-frequency characteristics of Hopfield neural network and its application. IEEE Internet Things J. 2025;12(14):27033-27043. https://doi.org/10.1109/JIOT.2025.3561933.
- Gao S, Zhang Z, Li Q, et al. Encrypt a story: A video segment encryption method based on the discrete sinusoidal memristive Rulkov neuron. IEEE Trans Depend Secure Comput. 2025;1-15. https://doi.org/10.1109/TDSC.2025.3603570
- Bao H, Zhu D, Liu W, Xu Q, Chen M, Bao B. Memristor synapse-based Morris–Lecar model: Bifurcation analyses and FPGA-based validations for periodic and chaotic bursting/spiking firings. Int J Bifurcat Chaos. 2020;30(03):2050045.
- Shen H, Yu F, Wang C, Sun J, Cai S. Firing mechanism based on single memristive neuron and double memristive coupled neurons. Nonlinear Dyn. 2022;110(4):3807-3822.
- Mou J, Ma T, Banerjee S, Zhang Y. A novel memcapacitive-synapse neuron: Bionic modeling, complex dynamics analysis and circuit implementation. IEEE Trans Circuits Syst I Regul Pap. 2024;71(4):1771-1780.
