An analytical investigation of the wave propagation behavior of the truncated M-fractional Landau–Ginzburg–Higgs model through two consent techniques
The nonlinear fractional Landau–Ginzburg–Higgs (LGH) model is a renowned nonlinear integrable mathematical model that is used to explain the nonlinear signal that shows weak scattering and radial links in the tropical and mid-latitude troposphere as interplays between equatorial and mid-latitude Rossby waves, superconductivity, and drift cyclotron waves in radially inhomogeneous plasma for coherent ion-cyclotron waves and equivalent incidents. This article investigates the fractional order of the LGH model utilizing two recent schemes: the generalized exponential rational function method and the extended tanh-function method, incorporating the truncated M-fractional derivative. Using these methods, we obtained a large number of different types of traveling wave solutions, including exponential functions, hyperbolic functions, trigonometric functions, rational functions, and their composite functions. Moreover, we examined the influence of wave velocity parameters on the soliton by sketching three-dimensional, along with two-dimensional plots of the obtained results. The attainment outcome authenticates the effectiveness and consistency of the utilized methods. The appropriateness of the obtained solutions is settled by putting them into their original model.
- Zulqarnain RM, Ma WX, Mehdi KB, Siddique I, Hassan AM, Askar, S. Physically significant solitary wave solutions to the space-time fractional Landau-Ginsburg-Higgs equation via three consistent methods. Front Phys. 2023;11:1205060. https://doi.org/10.3389/fphy.2023.1205060
- Gomez-Aguilar JF, Baleanu D. Schrodinger equation involving fractional operators with non-singular kernel. J Electromagn Waves Appl. 2017;31(7):752-761. https://doi.org/10.1080/09205071.2017.1312556
- Hosseini K, Mirzazadehm M, Gomez-Aguilar JF. Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives. Optik. 2020;224:165425. https://doi.org/10.1016/j.ijleo.2020.165425
- Khalil R, Horani MA, Yousef A, Sababheh M. A new definition of fractional derivative. J Comput Appl Math. 2014;264:65-70. https://doi.org/10.1016/j.cam.2014.01.002
- Al-Amin M, Islam MN. Mathematical analysis and study of the numerous traveling wave behavior for different wave velocities of the soliton solutions for the nonlinear Landau-Ginsberg-Higgs model in nonlinear media. J Mech Cont Math Sci. 2023;18(7), 24-37. https://doi.org/10.26782/jmcms.2023.07.00003
- Akinyemi L, Houwe A, Abbagari S, Wazwaz AM, Alshehri HM, Osman MS. Effects of the higher-order dispersion on solitary waves and modulation instability in a monomode fiber. Optik. 2023;288(1):171202. https://doi.org/10.1016/j.ijleo.2023.171202
- Al-Amin M, Islam MN, Ilhan OA, Akbar MA, Soybas D. Solitary wave solutions to the modified Zakharov-Kuznetsov and the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff models in mathematical physics. J Math. 2022;2022:5224289. https://doi.org/10.1155/2022/5224289
- Rahman RU, Hammouch Z, Alsubaie ASA, Mahmoud KH, Alshehri A, Az-Zo’bi EA, Osman MS. Dynamical behavior of fractional nonlinear dispersive equation in Murnaghan’s rod materials. Results Phys. 2024;56:107207. https://doi.org/10.1016/j.rinp.2023.107207
- Al-Amin M, Islam MN, Akbar MA. Abundant exact soliton solutions to the space-time fractional Phi-Four effective model for quantum effects through the modern scheme. Int J Sci Basic Appl Res. 2021;60(4):1-16.
- Razzaq W, Habib M, Nadeem M, Zafar A, Khan I, Mwanakatwea PK. Solitary wave solutions of conformabletime fractional equations using modified simplest equation method. Complexity. 2022;9:8705388. https://doi.org/10.1155/2022/8705388
- Rahman HU, Yasin S, Iqbal I. Optical soliton for (2+1)-dimensional coupled integrable NLSE using Sardar-sub-equation method. Mod Phys Lett B. 2024;38(10):2450044. https://doi.org/10.1142/S0217984924500441
- Yang JY, Ma WX, Khalique CM. Determining lump solutions for a combined soliton equation in (2+1)-dimensions. Eur PhysJ Plus. 2020;135:494(2020). https://doi.org/10.1140/epjp/s13360-020-00463-z
- Ma WX. N-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt Quantum Electron. 2020;52:511.https://doi.org/10.1007/s11082-020-02628-7
- Ma WX. N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. Math Comput Simul.2021;190:270-279.https://doi.org/10.1016/j.matcom.2021.05.020
- Ma WX. N-soliton solutions and the Hirota conditions in (1+1)-dimensions. Int J Nonlinear Sci Numer Simul.2022;23(1):123-133.https://doi.org/10.1515/ijnsns-2020-0214
- Ma WX, Yong X, Lu X. Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations. Wave Motion. 2021;103:102719.https://doi.org/10.1016/j.wavemoti.2021.102719
- Al-Amin M, Islam MN, Akbar MA. Adequate wide-ranging closed-form wave solutions to a nonlinear biological model. Partial Differ Equ Appl Math. 2021;4:100042.https://doi.org/10.1016/j.padiff.2021.100042
- Zafar A, Shakeel M, Ali A, Rezazadeh HH, Brkir A. Analytical study of complex Ginzburg-Landau equation arising in nonlinear optics. J Nonlinear Opt Phys Mater.2023;32(1):2350010. https://doi.org/10.1142/S0218863523500108
- Arshed S, Akram G, Sadaf M, Shadab H. New traveling wave solutions for paraxial wave equation via two integrating techniques. Opt Quant Electron. 2024;56:791. https://doi.org/10.1007/s11082-024-06589-z
- Hossain MN, Miah MM, Ganie AH, Osman MS, Ma WX. Discovering new abundant optical solutions for the resonant nonlinear Schrodinger equation using an analytical technique.Opt Quant Electron. 2024;56:847. https://doi.org/10.1007/s11082-024-06351-5
- Ali MR, Khattab MA, Mabrouk SM. Travelling wave solution for the Landau-Ginburg-Higgs model via the inverse scattering transformation method. Nonlinear Dyn.2023;111:7687-7697.https://doi.org/10.1007/s11071-022-08224-6
- Faridi WA, Myrzakulova Z, Myrzakulov R, Akgul A, Osman MS. The construction of exact solution and explicit propagating optical soliton waves of Kuralay equation bythe new extended direct algebraic and Nucci’s reduction techniques. Int J Mod Simul. 2024:1-20. https://doi.org/10.1080/02286203.2024.2315278
- Alaroud M. Application of Laplace residual power series method for approximate solutions of fractional IVP’s. Alex EngJ. 2022;61(2):1585-1595. https://doi.org/10.1016/j.aej.2021.06.065
- Mirzazadeh M, Akbulut A, Ta,scan F, Akinyemi L. A novel integration approach to study the perturbed Biswas-Milovic equation with Kudryashov’s law of refractive index. Optik.2022;252:168529. https://doi.org/10.1016/j.ijleo.2021.168529
- Islam Z, Abdeljabbar A, Sheikh MAN, Roshid HO, Taher MA. Optical solitons to the fractional order nonlinear complex model for wave packet envelope. Results Phys. 2022;43:106095. https://doi.org/10.1016/j.rinp.2022.106095
- Zafar A, Raheel M, Tariq KU, et al. A variety of optical waves olutions to space-time fractional perturbed Kundu-Eckhaus model with full non-linearity. Opt Quant Electron. 2024;56:401. https://doi.org/10.1007/s11082-023-06053-4
- Khater MMA. Dynamics of nonlinear time fractional equations in shallow water waves. Int J Theor Phys. 2024;63:92. https://doi.org/10.1007/s10773-024-05634-7
- Tariq KU, Bekir A, Zubair M. On some new travelling wave structures to the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli model. J Ocean Eng Sci.2024:9(2):99-111. https://doi.org/10.1016/j.joes.2022.03.015
- Roy R, Akbar MA, Seadawy AR, Baleanu D. Search for adequate closed form wave solutions to space-time fractional nonlinear equations. Partial Differ Equ Appl Math.2021;4:100025. https://doi.org/10.1016/j.padiff.2021.100025
- Al-Amin M, Islam MN, Akbar MA, Wazwaz AM, Osman MS. Assorted optical soliton solutions of the nonlinear fractiona lmodel in optical fibers possessing beta derivative. Phys Scr.2024;99(1):015227. https://doi.org/10.1088/1402-4896/ad1455
- Ma WX, Zhang Y, Tang Y. Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms. East Asian J Appl Math. 2020;10(4):732-745.
- Ma WX. A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations. ModPhys Lett B. 2022;36(20):2250094. https://doi.org/10.1142/S0217984922500944
- Cyrot M. Ginzburg-Landau theory for superconductors. Rep Prog Phys. 1973;36(2):103-158. https://doi.org/10.1088/0034-4885/36/2/001
- Bekir A, Unsal O. Exact solutions for a class of nonlinear wave equations by using the first integral method. Int J Nonlinear Sci.2013;15(2):99-110.
- Iftikhar A, Ghafoor A, Jubair T, Firdous S, Mohyud-DinST. The expansion method for travelling wave solutions of (2+1)-dimensional generalized KdV sine Gordon and Landau-Ginzburg-Higgs equation. Sci Res Essays.2013;8(28):1349-1359.https://doi.org/10.5897/SRE2013.5555
- Barman HK, Akbar MA, Osman MS, et al. Solutions to the Konopelchenko-Dubrovsky equation and the Landau-Ginzburg-Higgs equation via the generalized Kudryashov technique. Results Phys. 2021;24:104092. https://doi.org/10.1016/j.rinp.2021.104092
- Islam ME, Akbar MA. Stable wave solutions to the Landau-Ginzburg-Higgs equation and the modified equal width wave equation using the IBSEF method. Arab J Basic Appl Sci. 2020;27(1):270-278.https://doi.org/10.1080/25765299.2020.1791466
- Hu WP, Deng ZC, Han SM, Fa W. Multi symplectic Runge-Kutta method for Landau-Ginzburg-Higgs equation. Appl Math Mech. 2009;30(8):1027-1034. https://doi.org/10.1007/s10483-009-0809-x
- Irshad A, Mohyud-Din ST, Ahmed N, Khan U. A new modification in simple equation method and its applications on nonlinear equations of physical nature. Results Phys.2017;7:4232-4240. https://doi.org/10.1016/j.rinp.2017.10.048
- Cevikel AC, Aksoy E, Guner O, Bekir A. Dark bright soliton solutions for some evolution equations. Int J Nonlin Sci.2013;16(3):195-202.
- Deng SX, Ge XX. Analytical solution to local fractional Landau-Ginzburg-Higgs equation on fractal media. Therm Sci.2021;25(6B):4449-4455.https://doi.org/10.2298/TSCI2106449D
- Vanterler D, Sousa JC, de Oliveira EC. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int J Anal Appl.2018;16(1): 83-96.10
