Harnessing the gut microbiome for therapeutic interventions
Background: Gut microbiome comprises a diverse microbial community, including bacteria, viruses, and fungi, which play a crucial role in human health. These microbes contribute to host well-being by producing beneficial compounds such as short-chain fatty acids and other metabolites that help maintain microbial homeostasis. Recent advancements in high-throughput sequencing techniques have identified key microbes crucial for human health and revealed that an imbalance in these communities—known as dysbiosis—can lead to various diseases, including inflammatory bowel disease (IBD), Crohn’s disease, colorectal cancer, type 2 diabetes, and liver diseases. Aim: This review aims to provide a comprehensive overview of emerging microbiome-based therapeutic strategies, including fecal microbiota transplantation (FMT), prebiotics, probiotics, next-generation probiotics, synthetic microbiome transplantation, and microbiome editing therapies, as potential interventions to restore gut microbial balance and improve health outcomes. Relevance for patients: Microbiome-based therapies have emerged as promising tools for restoring gut homeostasis and managing microbiome-associated diseases. Approaches such as FMT have shown clinical benefits in conditions such as IBD, Clostridium difficile infection, and cancer immunotherapy. Understanding these therapies may guide future personalized treatments aimed at improving patient outcomes through modulation of the gut microbiome.
- Kapoor D, Sharma P, Sharma MMM, Kumari A, Kumar R. Microbes in pharmaceutical industry. In: Microbial Diversity, Interventions and Scope. Germany: Springer; 2020. p. 259-299. doi: 10.1007/978-981-15-4099-8_16
- Dutta B, Lahiri D, Nag M, Ghosh S, Dey A, Ray RR. Fungi in pharmaceuticals and production of antibiotics. In: Applied Mycology: Entrepreneurship with Fungi. Germany: Springer; 2022. p. 233-257. doi: 10.1007/978-3-030-90649-8_11
- Amara AAAF, Gupta A. An Overview About Pharmaceutical Grade Fungal Protein and Peptides. Prospects of Fungal Biotechnologies for Livestock. In: Fungal Biotechnologies for Animal Cell Lines. Vol. 2. Germany: Springer; 2025. p. 321-353. doi: 10.1007/978-3-032-06478-3_12
- Bhatt B, Patel K, Lee CN, Moochhala S. The Microbial Blueprint: The Impact of Your Gut on Your Wellbeing. Singapore: Partridge Publishing; 2024. Available from: https://www.partridgepublishing.com/ensg/bookstore/bookdetails/851799-the-microbial-blueprint-the-impact-of-your-gut-on-your-well-being [Last accessed on 2025 Jul 12].
- Welcome MO. History of development of gastrointestinal physiology: From antiquity to modern period and the birth of modern digestive physiology. In: Gastrointestinal Physiology: Development, Principles and Mechanisms of Regulation. Germany: Springer; 2018. p. 1-51. doi: 10.1007/978-3-319-91056-7_1
- Walter J, Ley R. The human gut microbiome: Ecology and recent evolutionary changes. Ann Rev Microbiol. 2011;65(1):411-429. doi: 10.1146/annurev-micro-090110-102830
- Neiroukh D, Hajdarpasic A, Ayhan C, Sultan S, Soliman O. Gut microbial taxonomy and its role as a biomarker in aortic diseases: A systematic review and future perspectives. J Clin Med. 2024;13(22):6938. doi: 10.3390/jcm13226938
- Mamo Z, Abera S, Tafesse M. Taxonomic and functional profiling of microbial community in municipal solid waste dumpsite. World J Microbiol Biotechnol. 2024;40(12):384. doi: 10.1007/s11274-024-04189-3
- He Z, Dong H. The roles of short-chain fatty acids derived from colonic bacteria fermentation of non-digestible carbohydrates and exogenous forms in ameliorating intestinal mucosal immunity of young ruminants. Front Immunol. 2023;14:1291846. doi: 10.3389/fimmu.2023.1291846
- Ramos Meyers G, Samouda H, Bohn T. Short chain fatty acid metabolism in relation to gut microbiota and genetic variability. Nutrients. 2022;14(24):5361. doi: 10.3390/nu14245361
- Ahamad R, Parveen S. Gut Microbiota and Nutrient Enrichment: Mechanism and Production of Vitamins. Probiotics. United States: CRC Press; 2024. p. 56-75. doi: 10.1201/9781003452249
- Pandit NK, Sharma P, Sharma P, Rout PR, Mohanty A, Meena SS. Valorizing agro-food waste for microbial B vitamin biosynthesis: Impacts on gut microbiota dynamics and microbial communication. Rev Environ Sci Bio Technol. 2026;25(1):1. doi: 10.1007/s11157-025-09753-3
- Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional roles of B‐vitamins in the gut and gut microbiome. Mol Nutr Food Res. 2020;64(18):2000426. doi: 10.1002/mnfr.202000426
- Kaplan BJ, Rucklidge JJ, Romijn A, McLeod K. The emerging field of nutritional mental health: Inflammation, the microbiome, oxidative stress, and mitochondrial function. Clin Psychol Sci. 2015;3(6):964-980. doi: 10.1177/2167702614555413
- Sahle Z, Engidaye G, Shenkute Gebreyes D, Adenew B, Abebe TA. Fecal microbiota transplantation and next-generation therapies: A review on targeting dysbiosis in metabolic disorders and beyond. SAGE Open Med. 2024;12:1-12. doi: 10.1177/20503121241257486
- Illiano P, Brambilla R, Parolini C. The mutual interplay of gut microbiota, diet and human disease. FEBS J. 2020;287(5):833-855. doi: 10.1111/febs.15217
- Rondanelli M, Borromeo S, Cavioni A, et al. Therapeutic strategies to modulate gut microbial health: Approaches for chronic metabolic disorder management. Metabolites. 2025;15(2):127. doi: 10.3390/metabo15020127
- Shukla V, Singh S, Verma S, Verma S, Rizvi AA, Abbas M. Targeting the microbiome to improve human health with the approach of personalized medicine: Latest aspects and current updates. Clin Nutr ESPEN. 2024;63:813-820. doi: 10.1016/j.clnesp.2024.08.005
- Feng W, Liu J, Ao H, Yue S, Peng C. Targeting gut microbiota for precision medicine: Focusing on the efficacy and toxicity of drugs. Theranostics. 2020;10(24):11278. doi: 10.7150/thno.47289
- Chauhan NS, Kumar S. Microbiome Therapeutics: Personalized Therapy Beyond Conventional Approaches. Elsevier; 2023. Available from: https://www.researchwithrutgers.com/en/publications/microbiome-therapeutics-personalized-therapy-beyond-conventional [Last accessed on 2025 Jul 12].
- Yaqub MO, Jain A, Joseph CE, Edison LK. Microbiome-driven therapeutics: From gut health to precision medicine. Gastrointest Disord. 2025;7(1):7. doi: 10.3390/gidisord7010007
- Ebadpour N, Abavisani M, Sahebkar A. Microbiome-driven precision medicine: Advancing drug development with pharmacomicrobiomics. J Drug Target. 2025;33:1495-1510. doi: 10.1080/1061186X.2025.2509283
- Shah JS, Scheible CE, Farris AL, Bishop KA. Precision Medicine and its Application to Chemical and Biological Diagnostics; 2023. Available from: https://www.ida.org/-/media/feature/publications/p/pr/precision-medicine-and-its-application-to-chemical-and-biological-diagnostics/p-33457.ashx [Last accessed on 2025 Jul 14].
- Satya S, Sharma S, Choudhary G, Kaushik G. Advances in environmental microbiology: A multi-omic perspective. In: Microbial Omics in Environment and Health. Germany: Springer; 2024. p. 175-204. doi: 10.1007/978-981-97-1769-9_7
- Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and metabolomic approaches deepen our knowledge of plant-endophyte interactions. Front Plant Sci. 2022;12:700200. doi: 10.3389/fpls.2021.700200
- Sarsan S, Pandiyan A, Rodhe AV, Jagavati S. Synergistic interactions among microbial communities. In: Microbes in Microbial Communities: Ecological and Applied Perspectives. Germany: Springer Nature; 2021. p. 1-37. doi: 10.1007/978-981-16-5617-0_1
- Liu XA, Li X, Shen P, Cong B, Wang L. Fundamental role of brain-organ interaction in behavior-driven holistic homeostasis. Fundam Res. 2024;5:2626-2638. doi: 10.1016/j.fmre.2024.09.005
- Chirivi M, Contreras GA. Endotoxin-induced alterations of adipose tissue function: A pathway to bovine metabolic stress. J Anim Sci Biotechnol. 2024;15(1):53. doi: 10.1186/s40104-024-01013-8
- Jin L, Xiao J, Luo Y, et al. Exploring gut microbiota in systemic lupus erythematosus: Insights and biomarker discovery potential. Clin Rev Allergy Immunol. 2025;68(1):42. doi: 10.1007/s12016-025-09051-4
- Grueso Navarro E, Lucendo AJ. Metabolic dysfunction-associated steatotic liver disease in inflammatory bowel disease: Prevalence, risk factors, pathophysiological pathways and clinical consequences. Expert Rev Clin Immunol. 2025;21:875-891. doi: 10.1080/1744666X.2025.2514605
- Aziz T, Khan AA, Tzora A, Voidarou C, Skoufos I. Dietary implications of the bidirectional relationship between the gut microflora and inflammatory diseases with special emphasis on irritable bowel disease: Current and future perspective. Nutrients. 2023;15(13):2956. doi: 10.3390/nu15132956
- Dixit K, Chaudhari D, Dhotre D, Shouche Y, Saroj S. Restoration of dysbiotic human gut microbiome for homeostasis. Life Sci. 2021;278:119622. doi: 10.1016/j.lfs.2021.119622
- Bajaj JS, Ng SC, Schnabl B. Promises of microbiome-based therapies. J Hepatol. 2022;76(6):1379-1391. doi: 10.1016/j.jhep.2021.12.003
- Ciernikova S, Sevcikova A, Drgona L, Mego M. Modulating the gut microbiota by probiotics, prebiotics, postbiotics, and fecal microbiota transplantation: An emerging trend in cancer patient care. Biochim Biophys Acta Rev Cancer. 2023;1878(6):188990. doi: 10.1016/j.bbcan.2023.188990
- Nawaz K, Ullah M, Yoo JW, Aiman U, Ghazanfar M, Naeem M. Role of nutrition in the management of inflammatory bowel disease. Recent Prog Nutr. 2025;5(1):002. doi: 10.21926/rpn.2501002
- Gupta N, Kachhawaha K, Behera DK, Verma VK. Next-generation probiotics as potential therapeutic supplement for gastrointestinal infections. Pharmacol Res Rep. 2023;1:100002. doi: 10.1016/j.prerep.2024.100002
- Makki K, Vidal H, Grangette C. Targeting the Gut Microbiota in Metabolic Disorders: Potential Impact of Lactic Acid Bacteria and Next-Generation Probiotics. Lactic Acid Bacteria. CRC Press; 2019. p. 474-498. Available from: https://www.taylorfrancis.com/chapters/ edit/10.1201/9780429057465-27/targeting-gut-microbiota-metabolic-disorders-juvenile-growth-kassem-makki-martin-schwarzer-bernardo-cuffaro-hubert-vidal-emmanuelle-maguin-corinne-grangette [Last accessed on 2025 Jul 14].
- Jan T, Negi R, Sharma B, et al. Next generation probiotics for human health: An emerging perspective. Heliyon. 2024;10:e35980. doi: 10.1016/j.heliyon.2024.e35980
- Singh A, Midha V, Chauhan NS, Sood A. Current perspectives on fecal microbiota transplantation in inflammatory bowel disease. Indian J Gastroenterol. 2024;43(1):129-144. doi: 10.1007/s12664-023-01516-8
- Srivastava N, Ibrahim SA, Nasr MHA. Microbiome Engineering: The New Dimension of Biotechnology. CRC Press; 2024. Available from: https://www.taylorfrancis.com/books/edit/10.1201/9781003394662/microbiome-engineering-nimmy-srivastava-salam-ibrahim-mohamed-hussein-arbab-nasr [Last accessed on 2025 Jul 14].
- D’Haens GR, Jobin C. Fecal microbial transplantation for diseases beyond recurrent clostridium difficile infection. Gastroenterology. 2019;157(3):624-636. doi: 10.1053/j.gastro.2019.04.053
- Matheson JAT, Holsinger RD. The role of fecal microbiota transplantation in the treatment of neurodegenerative diseases: A review. Int J Mol Sci. 2023;24(2):1001. doi: 10.3390/ijms24021001
- Ullah M, Awan UA, Ali H, et al. Carbon dots: New rising stars in the carbon family for diagnosis and biomedical applications. J Nanotheranostics. 2024;6(1):1. doi: 10.3390/jnt6010001
- Lemmens G, Brouwers J, Snoeys J, Augustijns P, Vanuytsel T. Insight into the colonic disposition of celecoxib in humans. Eur J Pharm Sci. 2020;145:105242. doi: 10.1016/j.ejps.2020.105242
- Fadda HM. The route to palatable fecal microbiota transplantation. AAPS PharmSciTech. 2020;21(3):114. doi: 10.1208/s12249-020-1637-z
- Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019;394(10196):420-431. doi: 10.1016/S0140-6736(19)31266-8
- Chumpitazi BP, Kearns G, Shulman RJ. The physiological effects and safety of peppermint oil and its efficacy in irritable bowel syndrome and other functional disorders. Aliment Pharmacol Therapeut. 2018;47(6):738-752. doi: 10.1111/apt.14519
- Zhong Y, Cao J, Ma Y, Zhang Y, Liu J, Wang H. Fecal microbiota transplantation donor and dietary fiber intervention collectively contribute to gut health in a mouse model. Front Immunol. 2022;13:842669. doi: 10.3389/fimmu.2022.842669
- Wilson BC, Vatanen T, Cutfield WS, O’Sullivan JM. The super-donor phenomenon in fecal microbiota transplantation. Front Cell Infect Microbiol. 2019;9:430737. doi: 10.3389/fcimb.2019.00002
- Brown JRM, Flemer B, Joyce SA, et al. Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection. BMC Gastroenterol. 2018;18:1-15. doi: 10.1186/s12876-018-0860-5
- Kulsoom J, Kamran HB, Ullah F, Nawaz K, Ullah M, Naeem M. Nano-Based Drug Delivery Systems in Plants. In: Revolutionizing Agriculture: A Comprehensive Exploration of Agri-Nanotechnology. Germany: Springer; 2024. p. 307-323. doi: 10.1007/978-3-031-76000-6_14
- Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: Elucidating the response to perturbations in order to modulate gut health. Gut. 2021;70(3):595-605. doi: 10.1136/gutjnl-2020-321747
- Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: Biomarkers, interventions, and challenges. Front Microbiol. 2025;16:1559521. doi: 10.3389/fmicb.2025.1559521
- Rivas-Domínguez A, Pastor N, Martínez-López L, Colón- Pérez J, Bermúdez B, Orta ML. The role of DNA damage response in dysbiosis-induced colorectal cancer. Cells. 2021;10(8):1934. doi: 10.3390/cells10081934
- Ullah M, Lee J, Hasan N, et al. Clindamycin-loaded polyhydroxyalkanoate nanoparticles for the treatment of methicillin-resistant Staphylococcus aureus-infected wounds. Pharmaceutics. 2024;16(10):1315. doi: 10.3390/pharmaceutics16101315
- Wei X, Wang F, Tan P, et al. The interactions between traditional Chinese medicine and gut microbiota in cancers: Current status and future perspectives. Pharmacol Res. 2024;203:107148. doi: 10.1016/j.phrs.2024.107148
- Al-Matouq J, Al-Ghafli H, Alibrahim NN, Alsaffar N, Radwan Z, Ali MD. Unveiling the interplay between the human microbiome and gastric cancer: A review of the complex relationships and therapeutic avenues. Cancers. 2025;17(2):226. doi: 10.3390/cancers17020226
- Routy B, Lenehan JG, Miller WH Jr., et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: A phase I trial. Nat Med. 2023;29(8):2121-2132. doi: 10.1038/s41591-023-02453-x
- Meng Y, Sun J, Zhang G. A viable remedy for overcoming resistance to anti-PD-1 immunotherapy: Fecal microbiota transplantation. Crit Rev Oncol Hematol. 2024;200:104403. doi: 10.1016/j.critrevonc.2024.104403
- Yu H, Li XX, Han X, et al. Fecal microbiota transplantation inhibits colorectal cancer progression: Reversing intestinal microbial dysbiosis to enhance anti-cancer immune responses. Front Microbiol. 2023;14:1126808. doi: 10.3389/fmicb.2023.1126808
- Aftab M, Ikram S, Ullah M, Khan SU, Wahab A, Naeem M. Advancement of 3D bioprinting towards 4D bioprinting for sustained drug delivery and tissue engineering from biopolymers. J Manuf Mater Process. 2025;9(8):285. doi: 10.3390/jmmp9080285
- Safdar M, Ullah M, Hamayun S, et al. Microbiome miracles and their pioneering advances and future frontiers in cardiovascular disease. Curr Probl Cardiol. 2024;49(9):102686. doi: 10.1016/j.cpcardiol.2024.102686
- Zhao W, Lei J, Ke S, et al. Fecal microbiota transplantation plus tislelizumab and fruquintinib in refractory microsatellite stable metastatic colorectal cancer: An open-label, single-arm, phase II trial (RENMIN-215). EClinicalMedicine. 2023;66:102315. doi: 10.1016/j.eclinm.2023.102315
- Ullah M, Bibi A, Wahab A, et al. Shaping the future of cardiovascular disease by 3d printing applications in stent technology and its clinical outcomes. Curr Probl Cardiol. 2024;49(1 Pt A):102039. doi: 10.1016/j.cpcardiol.2023.102039
- Gattazzo F. The Role of Gut Microbiota in the Modulation of Cancer therapy Responses from Immune Mechanisms to Clinical Implications; 2025. Available from: https://hdl. handle.net/10807/309857 [Last accessed on 2025 Jul 14].
- Yadav D, Sainatham C, Filippov E, Kanagala SG, Ishaq SM, Jayakrishnan T. Gut microbiome-colorectal cancer relationship. Microorganisms. 2024;12(3):484. doi: 10.3390/microorganisms12030484
- Naharro-Rodriguez J, Bacci S, Fernandez-Guarino M. Molecular biomarkers in cutaneous photodynamic therapy: A comprehensive review. Diagnostics (Basel). 2024;14(23):2724. doi: 10.3390/diagnostics14232724
- Zhang WH, Jin ZY, Yang ZH, et al. Fecal microbiota transplantation ameliorates active ulcerative colitis by downregulating pro-inflammatory cytokines in mucosa and serum. Front Microbiol. 2022;13:818111. doi: 10.3389/fmicb.2022.818111
- Ishikawa D, Nomura K, Zhang X, et al. P1225 The interplay of donor-derived gut microbiota correlates with the efficacy of combination therapy of fecal microbiota transplantation with antibiotics for ulcerative colitis. J Crohn’s Colitis. 2024;18(Suppl 1):i2173. doi: 10.1093/ecco-jcc/jjad212.1225
- Halsey TM, Thomas AS, Hayase T, et al. Microbiome alteration via fecal microbiota transplantation is effective for refractory immune checkpoint inhibitor-induced colitis. Sci Transl Med. 2023;15(700):eabq4006. doi: 10.1126/scitranslmed.abq4006
- Wang Y, Varatharajalu K, Shatila M, et al. Effect of fecal transplantation on patients’ reported outcome after immune checkpoint inhibitor colitis. Am Soc Clin Oncol. 2023;41:2645-2645. doi: 10.1200/JCO.2023.41.16_suppl.2645
- Khuat LT, Dave M, Murphy WJ. The emerging roles of the gut microbiome in allogeneic hematopoietic stem cell transplantation. Gut Microbes. 2021;13(1):1966262. doi: 10.1080/19490976.2021.1966262
- Aftab M, Ali H, Ullah M, et al. Biomedical applications of carbon dots: Advances in antimicrobial therapy and targeted delivery systems. Biomedical Materials and Devices. New York: Springer; 2025. p. 1-22. doi: 10.1007/s44174-024-00122-7
- Han X, Zhang BW, Zeng W, et al. Suppressed oncogenic molecules involved in the treatment of colorectal cancer by fecal microbiota transplantation. Front Microbiol. 2024;15:1451303. doi: 10.3389/fmicb.2024.1451303
- van der Vossen EW, Davids M, Voermans B, et al. Disentangle beneficial effects of strain engraftment after fecal microbiota transplantation in subjects with MetSyn. Gut Microbes. 2024;16(1):2388295. doi: 10.1080/19490976.2024.2388295
- Hemachandra S, Rathnayake SN, Jayamaha AA, et al. Fecal microbiota transplantation as an alternative method in the treatment of obesity. Cureus. 2025;17(1):e76858. doi: 10.7759/cureus.74762
- Jiang X, Gao X, Ding J, et al. Fecal microbiota transplantation alleviates mild‐moderate COVID-19 associated diarrhoea and depression symptoms: A prospective study of a randomized, double-blind clinical trial. J Med Virol. 2024;96(8):e29812. doi: 10.1002/jmv.29812
- Zeb F, Mehreen A, Naqeeb H, et al. Nutrition and dietary intervention in cancer: Gaps, challenges, and future perspectives. In: Nutrition and Dietary Interventions in Cancer. Germany: Springer; 2024. p. 281-307. doi: 10.1007/978-3-031-55622-7_11
- Song Q, Gao Y, Liu K, Tang Y, Man Y, Wu H. Gut microbial and metabolomics profiles reveal the potential mechanism of fecal microbiota transplantation in modulating the progression of colitis-associated colorectal cancer in mice. J Transl Med. 2024;22(1):1028. doi: 10.1186/s12967-024-05786-4
- Niu X, Jin L, Liu S, Li H. The impact of fecal microbiota transplantation on the intestinal microecology of patients with colorectal cancer. Med Health Res. 2024;2(2):31-33. doi: 10.18686/mhr.v2i2.4129
- Food and Agriculture Organization of the United Nations. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; 2001. Available from: https://citeseerx.ist.psu.edu/document? [Last accessed on 2025 Jul 14].
- Mohamed MYA. Probiotics benefits, potential limitations and risks. Egypt Acad J Biol Sci Physiol Mol Biol. 2024;16(1):253-276. doi: 10.21608/eajbsc.2024.344590
- Ikram S, Abbasi ZW, Khan AI, Kulsoom J, Khan MA, Khan SU. Aerobes in the gut microbiota-roles, interactions, and implications for host health. Int J Basic Med Sci Pharmacy. 2025;11(2):40-44.
- Mousa WK, Mousa S, Ghemrawi R, et al. Probiotics modulate host immune response and interact with the gut microbiota: Shaping their composition and mediating antibiotic resistance. Int J Mol Sci. 2023;24(18):13783. doi: 10.3390/ijms241813783
- Safdar M, Aftab M, Ullah M, Naeem M, Wahab A. Genetic engineering of fungi. In: Fungal Biotechnology. Florida: CRC Press; 2025. p. 36-44. doi: 10.1201/9781003594840-4
- Hossain KS, Amarasena S, Mayengbam S. B vitamins and their roles in gut health. Microorganisms. 2022;10(6):1168. doi: 10.3390/microorganisms10061168
- Ullah M, Wahab A, Khan D, et al. Modified gold and polymeric gold nanostructures: Toxicology and biomedical applications. Colloid Interface Sci Commun. 2021;42:100412. doi: 10.1016/j.colcom.2021.100412
- Hyland N, Stanton C. The Gut-Brain Axis: Dietary, Probiotic, and Prebiotic Interventions on the Microbiota. Elsevier; 2023. Available from: https://www.sciencedirect.com [Last accessed on 2025 Jul 14].
- Denman CR, Park SM, Jo J. Gut-brain axis: Gut dysbiosis and psychiatric disorders in Alzheimer’s and Parkinson’s disease. Front Neurosci. 2023;17:1268419. doi: 10.3389/fnins.2023.1268419
- Jeong JJ, Jin YJ, Ganesan R, et al. Multistrain probiotics alleviate diarrhea by modulating microbiome-derived metabolites and serotonin pathway. Probiotics Antimicrob Proteins. 2025;17(5):2894-2908. doi: 10.1007/s12602-024-10232-4
- Cabral V, Oliveira R, Correia M, Pedro M, Ubeda C, Xavier K. Novel Gut Probiotic Engages Microbiota for Recovery and Pathobiont Clearance While Preventing Inflammation [Preprint]; 2023. doi: 10.1101/2023.11.14.566997
- Ahmed Z, Ullah M, Zeshan D, Khan SU, Ali F, Wahab A. Exploring the tumor microenvironment in solid cancer: From biology to therapy. Methods Cell Biol. 2025;198:359-385. doi: 10.1016/bs.mcb.2025.02.020
- Altaib H, Badr Y, Suzuki T. Bifidobacteria and psychobiotic therapy: Current evidence and future prospects. Rev Agric Sci. 2021;9:74-91. doi: 10.7831/ras.9.0_74
- Han S, Lu Y, Xie J, et al. Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Front Cell Infect Microbiol. 2021;11:609722. doi: 10.3389/fcimb.2021.609722
- Taverniti V, Cesari V, Gargari G, et al. Probiotics modulate mouse gut microbiota and influence intestinal immune and serotonergic gene expression in a site-specific fashion. Front Microbiol. 2021;12:706135. doi: 10.3389/fmicb.2021.706135
- Mahesh Krishna B, Francis Luther King M, Robert Singh G, Gopichand A. 3D printing in drug delivery and healthcare. In: Advanced Materials and Manufacturing Techniques for Biomedical Applications. United States: John Wiley and Sons; 2023. p. 241-274. doi: 10.1002/9781394166985.ch10
- DiMattia Z, Damani JJ, Van Syoc E, Rogers CJ. Effect of probiotic supplementation on intestinal permeability in overweight and obesity: A systematic review of randomized controlled trials and animal studies. Adv Nutr. 2024;15(1):100162. doi: 10.1016/j.advnut.2023.100162
- Zhu X, Tian X, Wang M, Li Y, Yang S, Kong J. Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes. Int Microbiol. 2024;27(5):1417-1428. doi: 10.1007/s10123-024-00419-1
- Ullah M, Wahab A, Khan SU, et al. Stent as a novel technology for coronary artery disease and their clinical manifestation. Curr Probl Cardiol. 2023;48(1):101415. doi: 10.1016/j.cpcardiol.2022.101415
- Parhizgar N, Azadyekta M, Zabihi R. Effect of probiotic supplementation on depression and anxiety. Complement Med J. 2021;11(2):166-179. doi: 10.32598/cmja.11.2.1073.1
- Chung Y, Ryu Y, An BC, et al. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. Microbiome. 2021;9(1):122. doi: 10.1186/s40168-021-01067-3
- Piątek J, Bernatek M, Krauss H, et al. Effects of a nine-strain bacterial synbiotic compared to simethicone in colicky babies - an open-label randomized study. Benef Microbes. 2021;12(3):249-258. doi: 10.3920/bm2020.0178
- Kwong Z. The application of probiotics in gastrointestinal diseases. Theor Nat Sci. 2024;74:25-34. doi: 10.54254/2753-8818/2024.la18762
- Aftab M, Ikram S, Ullah M, et al. Recent trends and future directions in 3D printing of biocompatible polymers. J Manuf Mater Process. 2025;9(4):129. doi: 10.3390/jmmp9040129
- Sepehr A, Miri ST, Aghamohammad S, et al. Health benefits, antimicrobial activities, and potential applications of probiotics: A review. Medicine (Baltimore). 2024;103(52):e32412. doi: 10.1097/md.0000000000032412
- Korotko U, Biskupski M, Cygnarowicz A, et al. The role of probiotics in antibiotic-associated diarrhea, acute diarrhea and functional constipation in children. J Educ Health Sport. 2024;76:56616-56616. doi: 10.12775/jehs.2024.76.56616
- Wampers A, Huysentruyt K, Vandenplas Y. An update on the use of ‘biotics’ in pediatric infectious gastroenteritis. Expert Opin Pharmacother. 2024;25(11):1483-1496. doi: 10.1080/14656566.2024.2374494
- Lee SJ, Jeong W, Atala A. 3D Bioprinting for engineered tissue constructs and patient-specific models: Current progress and prospects in clinical applications. Adv Mater. 2024;36(49):2408032. doi: 10.1002/adma.202408032
- Tiwari A, Ika Krisnawati D, Susilowati E, Mutalik C, Kuo TR. Next-generation probiotics and chronic diseases: A review of current research and future directions. J Agric Food Chem. 2024;72(50):27679-27700. doi: 10.1021/acs.jafc.4c08702
- Patra D. Synthetic biology-enabled engineering of probiotics for precision and targeted therapeutic delivery applications. Exon. 2024;1(2):54-66. doi: 10.69936/en11y0024
- Ullah M, Safdar M, Yoo JW, et al. Introduction to gastrointestinal inflammation and Gut Microbiota. In: Gastrointestinal Inflammations and Gut Microbiota. United States: CRC Press; 2025. p. 1-13. doi: 10.1201/9781003493143
- Verdugo-Meza A, Gill SK, Godovannyi A, et al. Bio- Engineering a Common Probiotic to Exploit Colonic Inflammation Promotes Reliable Efficacy in Translational Models of Colitis. [bioRxiv Preprint]; 2024. doi: 10.1101/2024.10.08.617317
- Aziz T, Naveed M, Sarwar A, et al. Functional annotation of Lactiplantibacillus plantarum 13-3 as a potential starter probiotic involved in the food safety of fermented products. Molecules. 2022;27(17):5399. doi: 10.3390/molecules27175399
- Abouelela ME, Helmy YA. Next-generation probiotics as novel therapeutics for improving human health: Current trends and future perspectives. Microorganisms. 2024;12(3):430. doi: 10.3390/microorganisms12030430
- Hasan N, Jiafu C, Mustopa AZ, et al. Recent advancements of nitric oxide-releasing hydrogels for wound dressing applications. J Pharm Investig. 2023;53(6):781-801. doi: 10.1007/s40005-023-00651-7
- Meng J, Liu S, Wu X. Engineered probiotics as live biotherapeutics for diagnosis and treatment of human diseases. Crit Rev Microbiol. 2024;50(3):300-314. doi: 10.1080/1040841X.2023.2280197
- Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Hupp T, Duchnowska R, Marek-Trzonkowska N, Połom K. Next-generation probiotics-do they open new therapeutic strategies for cancer patients? Gut Microbes. 2022;14(1):2035659. doi: 10.1080/19490976.2022.2035659
- Al-Fakhrany OM, Elekhnawy E. Next-generation probiotics: The upcoming biotherapeutics. Mol Biol Rep. 2024;51(1):505. doi: 10.1007/s11033-024-09398-5
- Steidler L, Neirynck S, Huyghebaert N, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003;21(7):785-789. doi: 10.1038/nbt840
- Oh JH, Van Pijkeren JP. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 2014;42(17):e131-e131. doi: 10.1093/nar/gku623
- Li H, Cheng Y, Cui L, et al. Combining gut microbiota modulation and enzymatic-triggered colonic delivery by prebiotic nanoparticles improves mouse colitis therapy. Biomater Res. 2024;28:0062. doi: 10.34133/bmr.0062
- Ren Y, Nie L, Luo C, Zhu S, Zhang X. Advancement in therapeutic intervention of prebiotic-based nanoparticles for colonic diseases. Int J Nanomed. 2022;17:6639. doi: 10.2147/IJN.S390102
- Guo J, Li L, Cai Y, Kang Y. The development of probiotics and prebiotics therapy to ulcerative colitis: A therapy that has gained considerable momentum. Cell Commun Signal. 2024;22(1):268. doi: 10.1186/s12964-024-01611-z
- Fei Y, Chen Z, Han S, et al. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Crit Rev Food Sci Nutr. 2023;63(8):1037-1054. doi: 10.1080/10408398.2021.1958744
- Sadiq MB, Azhar F-u-A, Ahmad I. Probiotic and prebiotic interactions and their role in maintaining host immunity. In: Microbiome-Gut-Brain Axis: Implications on Health. Germany: Springer; 2022. p. 425-443. doi: 10.1007/978-981-16-1626-6_22
- Alifah N, Palungan J, Ardayanti K, et al. Development of clindamycin-releasing polyvinyl alcohol hydrogel with self-healing property for the effective treatment of biofilm-infected wounds. Gels. 2024;10(7):482. doi: 10.3390/gels10070482
- Cusumano G, Flores GA, Venanzoni R, Angelini P. The impact of antibiotic therapy on intestinal microbiota: Dysbiosis, antibiotic resistance, and restoration strategies. Antibiotics. 2025;14(4):371. doi: 10.3390/antibiotics14040371
- Speckmann B, Ehring E, Hu J, Rodriguez Mateos A. Exploring substrate-microbe interactions: A metabiotic approach toward developing targeted synbiotic compositions. Gut Microbes. 2024;16(1):2305716. doi: 10.1080/19490976.2024.2305716
- Wang X, Xing Y, Ji Y, et al. The combination of phages and faecal microbiota transplantation can effectively treat mouse colitis caused by Salmonella enterica Serovar Typhimurium. Front Microbiol. 2022;13:944495. doi: 10.3389/fmicb.2022.944495
- Safdar M, Amin Z, Ullah M, Wahab A, Hasan N, Naeem M. Cancer stem cell analysis and targeting. Methods Cell Biol. 2025;198:251-271. doi: 10.1016/bs.mcb.2025.02.017
- Jennings SA, Clavel T. Synthetic communities of gut microbes for basic research and translational approaches in animal health and nutrition. Annu Rev Anim Biosci. 2024;12(1):283-300. doi: 10.1146/annurev-animal-021022-025552
- Li L, Nielsen J, Chen Y. Personalized gut microbial community modeling by leveraging genome-scale metabolic models and metagenomics. Curr Opin Biotechnol. 2025;91:103248. doi: 10.1016/j.copbio.2024.103248
- Waleed A, Hamayun S, Shaukat A, et al. Nanotechnology and biomedical devices used as a novel tool in biosensing and bioimaging of disease. J Women Med Dent Coll. 2023;1(4):13-21.doi: 10.56600/jwmdc.v1i4
- Biazzo M, Deidda G. Fecal microbiota transplantation as new therapeutic avenue for human diseases. J Clin Med. 2022;11(14):4119. doi: 10.3390/jcm11144119 1
- Li Y, Zhu W, Jiang Y, Lessing DJ, Chu W. Synthetic bacterial consortia transplantation for the treatment of Gardnerella vaginalis-induced bacterial vaginosis in mice. Microbiome. 2023;11(1):54. doi: 10.1186/s40168-023-01454-6
- Oliveira RA, Pandey B, Lee K, et al. Statistical Design of a Synthetic Microbiome that Clears a Multi-Drug Resistant Gut Pathogen. [bioRxiv Preprint]; 2024. doi: 10.1101/2024.02.28.582635
- Ullah M, Wahab A, Saeed S, et al. Coronavirus and its terrifying inning around the globe: The pharmaceutical cares at the main frontline. Chemosphere. 2021;275:129968. doi: 10.1016/j.chemosphere.2021.129968
- Zahedifard Z, Mahmoodi S, Ghasemian A. Genetically engineered bacteria as a promising therapeutic strategy against cancer: A comprehensive review. Biotechnol Appl Biochem. 2025;72:1458-1476. doi: 10.1002/bab.2676
- Ullah M, Awan UA, Muhaymin A, et al. Cancer nanomedicine: Smart arsenal in the war against cancer. Inorg Chem Commun. 2025;174:114030. doi: 10.1016/j.inoche.2024.114030
- Amen RA, Hassan YM, Essmat RA, et al. Harnessing the microbiome: CRISPR-based gene editing and antimicrobial peptides in combating antibiotic resistance and cancer. Probiotics Antimicrob Proteins. 2025;174:1938-1968. doi: 10.1007/s12602-025-10169-7
- Remington LA, Goodwin D. Clinical Anatomy and Physiology of the Visual System E-book: Clinical Anatomy and Physiology of the Visual System E-book. Amsterdam: Elsevier Health Sciences; 2021. Available from: https://www. elsevier.com/permissions [Last accessed on 2025 Jul 14].
- Nawaz K, Ullah M, Yoo JW, Wahab A, Hasan N, Naeem M. Tissue Engineering for Wound Healing: Recent Advancements and Opportunities. Nanotechnology in Wound Healing. CRC Press; 2025. p. 149-167. Available from: https://www. taylorfrancis.com/chapters/edit/10.1201/9781003605966-7/tissue-engineering-wound-healing-khalid-nawaz-muneeb-ullah-jin-wook-yoo-abdul-wahab-nurhasni-hasan-muhammad-naeem [Last accessed on 2025 Jul 14].
- Selim HMRM, Gomaa FAM, Alshahrani MY, Aboshanab KM. Role of CRISPR-Cas system as a new approach in fighting the antimicrobial resistance of bacterial and viral pathogens. Infect Dis Immun. 2025;5(02):127-137. doi: 10.1097/id9.0000000000000127
- Liu L, Zhao W, Zhang H, Shang Y, Huang W, Cheng Q. Relationship between pediatric asthma and respiratory microbiota, intestinal microbiota: A narrative review. Front Microbiol. 2025;16:1550783. doi: 10.3389/fmicb.2025.1550783
- Pantazi AC, Balasa AL, Mihai CM, et al. Development of gut microbiota in the first 1000 days after birth and potential interventions. Nutrients. 2023;15(16):3647. doi: 10.3390/nu15163647
- Olatunji AO, Olaboye JA, Maha CC, Kolawole TO, Abdul S. Next-generation strategies to combat antimicrobial resistance: Integrating genomics, CRISPR, and novel therapeutics for effective treatment. Eng Sci Technol J. 2024;5(7):2284-2303. doi: 10.51594/estj.v5i7.1344
- Sharon I, Quijada NM, Pasolli E, et al. The core human microbiome: Does it exist and how can we find it? A critical review of the concept. Nutrients. 2022;14(14):2872. doi: 10.3390/nu14142872
- Debnath N, Kumar R, Kumar A, Mehta PK, Yadav AK. Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnol Genet Eng Rev. 2021;37(2):105-153. doi: 10.1080/02648725.2021.1930054
- Debnath N, Yadav AK. Regulation of probiotic as a therapeutic agent to manage gastrointestinal cancer. Probiotic Research in Therapeutics: Modulation of Gut Flora: Management of Inflammation and Infection Related Gut Etiology. Vol. 2. Singapore: Springer Nature; 2021. p. 167. doi: 10.1007/978-981-33-6236-9_7
- Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts imbalance imbalances the brain: A review of gut microbiota association with neurological and psychiatric disorders. Front Med. 2022;9:813204. doi: 10.3389/fmed.2022.813204
- Deehan EC, Zhang Z, Riva A, et al. Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. Microbiome. 2022;10(1):77. doi: 10.1186/s40168-022-01256-0
- Wang B, Han D, Hu X, Chen J, Liu Y, Wu J. Exploring the role of a novel postbiotic bile acid: Interplay with gut microbiota, modulation of the farnesoid X receptor, and prospects for clinical translation. Microbiol Res. 2024;287:127865. doi: 10.1016/j.micres.2024.127865
- Caradonna E, Abate F, Schiano E, et al. Trimethylamine-N-Oxide (TMAO) as a rising-star metabolite: Implications for human health. Metabolites. 2025;15(4):220. doi: 10.3390/metabo15040220
- Nageswaran V. The Impact of Gut Microbial Imidazole Propionate on Endothelial Regeneration and the Development of Atherosclerosis [Dissertation]; 2023. doi: 10.17169/refubium-42738
- Luo J, Luo M, Kaminga AC, et al. Integrative metabolomics highlights gut microbiota metabolites as novel NAFLD-related candidate biomarkers in children. Microbiol Spectr. 2024;12(4):e0523022. doi: 10.1128/spectrum.05230-22
- Tan J, Taitz J, Nanan R, Grau G, Macia L. Dysbiotic gut microbiota-derived metabolites and their role in non-communicable diseases. Int J Mol Sci. 2023;24(20):15256. doi: 10.3390/ijms242015256
- Ferrocino I, Rantsiou K, McClure R, et al. The need for an integrated multi-OMICs approach in microbiome science in the food system. Compr Rev Food Sci Food Saf. 2023;22(2):1082-1103. doi: 10.1111/1541-4337.13103
- Han S, Van Treuren W, Fischer CR, et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature. 2021;595(7867):415-420. doi: 10.1038/s41586-021-03707-9
- Singer F, Kuhring M, Renard BY, Muth T. Moving toward metaproteogenomics: A computational perspective on analyzing microbial samples via proteogenomics. In: Proteogenomics: Methods and Protocols. Germany: Springer; 2024. p. 297-318. doi: 10.1007/978-1-0716-4152-1_17
- Kadam A, Kadam D, Tungare K, Shah H. Probiotics and prebiotics in healthy ageing. In: Nutrition, Food and Diet in Ageing and Longevity. Germany: Springer; 2021. p. 85-108. doi: 10.1007/978-3-030-83017-5_5
- Hasan N, Luthfiyah W, Palungan J, et al. Nitric oxide-releasing self-healing hydrogel for antibacterial and antibiofilm efficacy against polymicrobial infection. Future Microbiol. 2024;19(18):1559-1571. doi: 10.1080/17460913.2024.2415237
- Patel PG, Patel AC, Chakraborty P, Gosai HB. Impact of dietary habits, ethnicity, and geographical provenance in shaping human gut microbiome diversity. In: Probiotics, Prebiotics, Synbiotics, and Postbiotics: Human Microbiome and Human Health. Germany: Springer; 2023. p. 3-27. doi: 10.1007/978-981-99-1463-0_1
- Van Zanten AR. Personalized nutrition therapy in critical illness and convalescence: Moving beyond one-size-fits-all to phenotyping and endotyping. Curr Opin Crit Care. 2023;29(4):281-285. doi: 10.1097/MCC.0000000000001025
- Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, et al. Applications of machine learning in human microbiome studies: A review on feature selection, biomarker identification, disease prediction and treatment. Front Microbiol. 2021;12:634511. doi: 10.3389/fmicb.2021.634511
- Xia Y, Sun J. Applied Microbiome Statistics: Correlation, Association, Interaction and Composition. United States: CRC Press; 2024. doi: 10.1201/9781003121572
- Airola C, Severino A, Porcari S, et al. Future modulation of gut microbiota: From eubiotics to FMT, engineered bacteria, and phage therapy. Antibiotics. 2023;12(5):868. doi: 10.3390/antibiotics12050868
- Seet WT, Mat Afandi MA, Shamsuddin SA, Lokanathan Y, Ng MH, Maarof M. Current good manufacturing practice (cGMP) Facility and production of stem cell. In: Stem Cell Production: Processes, Practices and Regulations. Germany: Springer; 2022. p. 37-68. doi: 10.1007/978-981-16-7589-8_3
- Ng RW, Dharmaratne P, Wong S, Hawkey P, Chan P, Ip M. Revisiting the donor screening protocol of faecal microbiota transplantation (FMT): A systematic review. Gut. 2024;73(6):1029-1031. doi: 10.1136/gutjnl-2023-331180
