Comparative transcriptomic analysis of macrophages treated with a combination of ROCK pathway inhibitors

Background: At present, there is no therapy for the long-term (chronic) rejection of transplanted organs. This condition leads to tissue fibrosis and occlusion of the blood vessels. Aim: The overall goal of the current research is to identify a clinically applicable therapy for chronic rejection in transplanted organs. Our previous study showed that inhibitors of the RhoA/Rock pathway, such as Rezurock and fingolimod, prevent chronic rejection in rodent transplantation models, with Rezurock being superior in reducing fibrosis. Materials and methods: In this study, we analyzed the effect of a Rezurock and fingolimod combination on the transcriptome of mouse peritoneal macrophages and protein expression in both mouse and human macrophages. Results: The Rezurock/fingolimod combination resulted in the differential expression of 4,855 genes (2,477 downregulated and 2378 upregulated). Downregulated genes were related to fibrotic pathways, extracellular matrix, blood vessel development, cell adhesion, and cytokine production. Protein expression analysis showed that Rezurock/fingolimod treatment had a significantly stronger effect on the expression of pentraxin 3, chemokine (C-C motif) ligand 2, C-C motif chemokine receptor 2, and transforming growth factor beta 1 in mouse macrophages, and was much more effective in reducing the expression of Notch1 and Rho-associated coiled-coil kinase 2 in human macrophages compared to individual treatments. Conclusion: Rezurock/fingolimod treatment not only affects fibrotic pathways but also downregulates genes related to cell cycle progression and cytokine production and disrupts macrophage recruitment signaling. These findings indicate that Rezurock, alone or in combination with other immunomodulators, may be a promising candidate for clinical therapy targeting chronic rejection.

- Available from: AQ6 https://www.transplant/observatory.org/wp/ content/uploads/2023/11/2022/data/global/report_vf_2.pdf
- Symeou S, Avramidou E, Papalois V, Tsoulfas G. Global transplantation: Lessons from organ transplantation organizations worldwide. World J Transplant. 2025;15(1):99683. doi: 10.5500/wjt.v15.i1.99683
- Justiz Vaillant AA, Mohseni M. Chronic transplantation rejection. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2024. Available from: AQ6 https://www.ncbi.nlm.nih. gov/books/nbk535435
- Holt CD. Overview of immunosuppressive therapy in solid organ transplantation. Anesthesiol Clin. 2017;35:365-380. doi: 10.1016/j.anclin.2017.04.001
- Chancharoenthana W, Traitanon O, Leelahavanichkul A, Tasanarong A. Molecular immune monitoring in kidney transplant rejection: A State-of-the-art review. Front Immunol. 2023;14:1206929. doi: 10.3389/fimmu.2023.1206929
- Liu Y, Kubiak JZ, Li XC, Ghobrial RM, Kloc M. Macrophages and RhoA pathway in transplanted organs. Results Probl Cell Differ. 2017;62:365-376. doi: 10.1007/978-3-319-54090-0_15
- Liu Y, Chen W, Wu C, et al. Macrophage/monocyte-specific deletion of Ras homolog gene family member A (RhoA) downregulates fractalkine receptor and inhibits chronic rejection of mouse cardiac allografts. J Heart Lung Transplant. 2017;36:340-354. doi: 10.1016/j.healun.2016.08.011
- Chen W, Chen W, Chen S, Uosef A, Ghobrial RM, Kloc M. Fingolimod (FTY720) prevents chronic rejection of rodent cardiac allografts through inhibition of the RhoA pathway. Transpl Immunol. 2021;65:101347. doi: 10.1016/j.trim.2020.101347
- Tharaux PL, Bukoski RC, Rocha PN, et al. Rho kinase promotes alloimmune responses by regulating the proliferation and structure of T cells. J Immunol. 2003;171:96-105. doi: 10.4049/jimmunol.171.1.96
- Subuddhi A, Uosef A, Zou D, Ubelaker HV, Ghobrial RM, Kloc M. Comparative transcriptome profile of mouse macrophages treated with the RhoA/Rock pathway inhibitors Y27632, fingolimod (gilenya), and rezurock (belumosudil, SLx-2119). Int Immunopharmacol. 2023;118:110017. doi: 10.1016/j.intimp.2023.110017
- Liu Y, Chen W, Minze LJ, et al. Dissonant response of M0/ M2 and M1 bone-marrow-derived macrophages to RhoA pathway interference. Cell Tissue Res. 2016;366:707-720. doi: 10.1007/s00441-016-2491-x
- Chen W, Chen S, Chen W, Li XC, Ghobrial RM, Kloc M. Screening RhoA/ROCK inhibitors for the ability to prevent chronic rejection of mouse cardiac allografts. Transpl Immunol. 2018;50:15-25. doi: 10.1016/j.trim.2018.06.002
- Li Q, Cheng Y, Zhang Z, Bi Z, Ma X, Wei Y, Wei X. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med. 2022;12:e1036. doi: 10.1002/ctm2.1036
- Chen W, Ghobrial RM, Li XC, Kloc M. Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21- activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages. Immunobiology. 2018;223:634-647. doi: 10.1016/j.imbio.2018.07.009
- Takeda Y, Matoba K, Kawanami D, et al. ROCK2 regulates monocyte migration and cell to cell adhesion in vascular endothelial cells. Int J Mol Sci. 2019;20:1331. doi: 10.3390/ijms20061331
- Zanin-Zhorov A, Blazar BR. ROCK2, a critical regulator of immune modulation and fibrosis has emerged as a therapeutic target in chronic graft-versus-host disease. Clin Immunol. 2021;230:108823. doi: 10.1016/j.clim.2021.108823
- Ogawa T, Shichino S, Ueha S, Matsushima K. Macrophages in lung fibrosis. Int Immunol. 2021;33:665-671. doi: 10.1093/intimm/dxab040
- Reyfman PA, Walter JM, Joshi N, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199:1517-1536. doi: 10.1164/rccm.201712-2410OC
- Yue Z, Jiang Z, Ruan B, et al. Disruption of myofibroblastic notch signaling attenuates liver fibrosis by modulating fibrosis progression and regression. Int J Biol Sci. 2021;17:2135-2146. doi: 10.7150/ijbs.60056
- D’Amati A, Ronca R, Maccarinelli F, et al. PTX3 shapes profibrotic immune cells and epithelial/fibroblast repair and regeneration in a murine model of pulmonary fibrosis. Pathol Res Pract. 2023;251:154901. doi: 10.1016/j.prp.2023.154901
- Han X, Liu L, Huang S, et al. RNA m6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis. Nat Commun. 2023;14:7328. doi: 10.1038/s41467-023-43219-w
- Raghu H, Lepus CM, Wang Q, et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis. 2017;76:914-922. doi: 10.1136/annrheumdis-2016-210426
- Sahin H, Wasmuth HE. Chemokines in tissue fibrosis. Biochim Biophys Acta. 2013;1832:1041-1048. doi: 10.1016/j.bbadis.2012.11.004
- Yang J, Agarwal M, Ling S, et al. Diverse injury pathways induce alveolar epithelial cell CCL2/12, which promotes lung fibrosis. Am J Respir Cell Mol Biol. 2020;62:622-632. doi: 10.1165/rcmb.2019-0297OC
- Palchevskiy V, Hashemi N, Weigt SS, et al. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis. Fibrogenesis Tissue Repair. 2011;4:10. doi: 10.1186/1755-1536-4-10
- Seki E, De Minicis S, Inokuchi S, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50:185-197. doi: 10.1002/hep.22952
- Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199-210. doi: 10.1002/path.2277
- Wells RG. How collagen becomes ‘stiff ’. Elife. 2022;11:e77041. doi: 10.7554/eLife.77041
- Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, Ten Dijke P. TGF-β-induced endothelial-mesenchymal transition in fibrotic diseases. Int J Mol Sci. 2017;18:2157. doi: 10.3390/ijms18102157
- Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors. 2011;29:196-202. doi: 10.3109/08977194.2011.595714
- Chang DH, Youn JC, Dilibero D, Patel JK, Kobashigawa JA. Heart transplant immunosuppression strategies at cedars-sinai medical center. Int J Heart Fail. 2020;3:15-30. doi: 10.36628/ijhf.2020.0034
- Hardinger KL, Brennan DC. Novel immunosuppressive agents in kidney transplantation. World J Transplant. 2013;3:68-77. doi: 10.5500/wjt.v3.i4.68
- Small B, Au J, Brink H, Shah I, Strah H. Induction and maintenance immunosuppression in lung transplantation. Indian J Thorac Cardiovasc Surg. 2022;38(Suppl 2):300-317. doi: 10.1007/s12055-021-01225-x
- Moini M, Schilsky ML, Tichy EM. Review on immunosuppression in liver transplantation. World J Hepatol. 2015;7:1355-1368. doi: 10.4254/wjh.v7.i10.1355
- Safarini OA, Keshavamurthy C, Patel P. Calcineurin inhibitors. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2025.
- Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47:85-118. doi: 10.1016/s0162-3109(00)00188-0
- Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: Inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995;270:286-290. doi: 10.1126/science.270.5234.286
- Wu K, Wang JP, Natekar NA, et al. Roadmap on magnetic nanoparticles in nanomedicine. Nanotechnology. 2024;36(4):042003. doi: 10.1088/1361-6528/ad8626
- Singh R, Yadav D, Ingole PG, Ahn YH. Magnetic engineering nanoparticles: Versatile tools revolutionizing biomedical applications. Biomater Adv. 2024;163:213948. doi: 10.1016/j.bioadv.2024.213948
- Mishra S, Yadav MD. Magnetic nanoparticles: A comprehensive review from synthesis to biomedical frontiers. Langmuir. 2024;40(33):17239-17269. doi: 10.1021/acs.langmuir.4c01532
- Lauener F, Schläpfer M, Mueller TF, et al. Functionalized magnetic nanoparticles remove donor-specific antibodies (DSA) from patient blood in a first ex vivo proof of principle study. Sci Rep. 2024;14:15818. doi: 10.1038/s41598-024-66876-3
- Winkler R, Ciria M, Ahmad M, Plank H, Marcuello CA. A review of the current State of magnetic force microscopy to unravel the magnetic properties of nanomaterials applied in biological systems and future directions for quantum technologies. Nanomaterials (Basel). 2023;13:2585. doi: 10.3390/nano13182585
- Vishnyakova P, Elchaninov A, Fatkhudinov T, Kolesov D. Unravelling approaches to study macrophages: From classical to novel biophysical methodologies. PeerJ. 2025;13:e19039. doi: 10.7717/peerj.19039
- Day NB, Orear CR, Velazquez-Albino AC, et al. Magnetic cellular backpacks for spatial targeting, imaging, and immunotherapy. ACS Appl Bio Mater. 2024;7(8):4843-4855. doi: 10.1021/acsabm.3c00720
- Orii R, Tanimoto H. Structural response of microtubule and actin cytoskeletons to direct intracellular load. J Cell Biol. 2025;224(2):e202403136. doi: 10.1083/jcb.202403136
- Okura K, Tatsumi H. Pulling forces dampen torsional fluctuations of actin filaments and reduce cooperative cofilin binding. J Mol Biol. 2025;437(4):168942. doi: 10.1016/j.jmb.2025.168942