Hesperidin enhances the repair and regeneration of full-thickness dermal wounds in mice exposed to fractionated γ-radiation
![](https://article.accscience.com/imageFile/by-nc.png)
Background and aim: Neoplasms are often clinically treated with radiation therapy, which is known for its therapeutic benefits. However, pre-surgical radiotherapy is associated with a high incidence of surgical wound healing complications, necessitating the exploration of new pharmacological approaches. This study investigates the effects of 100 mg/kg oral hesperidin on mice undergoing hemi-body irradiation with varying fractionated γ-radiation doses. Methods: Mice were exposed to 10, 20, or 40 Gy doses of fractionated γ-radiation (2 Gy/day) below the rib cage. Full-thickness excision wounds were created on their dorsum, and wound contractions were assessed periodically through video imaging. Biochemical profiles were analyzed by measuring collagen content, DNA synthesis, and nitric oxide (NO) levels in granulation tissue, as well as glutathione (GSH) levels, GSH peroxidase (GSHpx) activity, and lipid peroxidation (LPx) in the skin. Histological examinations were conducted at various post-irradiation intervals to assess skin regeneration. Results: Fractionated irradiation delayed wound contraction and prolonged mean wound healing time (MHT) in a dose-dependent manner, reducing collagen content, DNA synthesis, and NO levels in granulation tissue. In addition, irradiation decreased GSH concentrations and GSHpx activity while increasing LPx, with severity correlating to radiation dose. Fibroblast and vascular densities also declined following fractionated irradiation. In contrast, pre-treatment with hesperidin significantly enhanced wound contraction, reduced MHT, and increased collagen levels, DNA synthesis, and NO production. Furthermore, hesperidin treatment elevated GSH levels and GSHpx activity while decreasing radiation-induced LPx. In addition, hesperidin pre-treatment improved collagen deposition and fibroblast and vascular densities. Conclusion: This study demonstrates that hesperidin accelerates wound healing after fractionated radiation, suggesting hesperidin’s potential as a therapeutic paradigm in managing irradiated wounds. Relevance for patients: The use of hesperidin is expected to mitigate the complications of surgical wounds arising after radiotherapy of cancer patients in a clinical setting.
![](https://api-journal.accscience.com/uploads/file/20250207/be943c45a81b14991a7a8bfeb698d84b.jpg)
- Reaz F, Traneus E, Bassler N. Tuning spatially fractionated radiotherapy dose profiles using the moiré effect. Sci Rep. 2024;14(1):8468. doi: 10.1038/S41598-024-55104-7
- Gil GOB, De Andrade WP, Diniz PHC, et al. A phase II randomized clinical trial to assess toxicity and quality of life of breast cancer patients with hypofractionated versus conventional fractionation radiotherapy with regional nodal irradiation in the context of COVID-19 crisis. Front Oncol. 2023;13:1202544. doi: 10.3389/FONC.2023.1202544/BIBTEX
- Lu Y, Hui B, Yang D, et al. Efficacy and safety analysis of hypofractionated and conventional fractionated radiotherapy in postoperative breast cancer patients. BMC Cancer. 2024;24(1):181. doi: 10.1186/S12885-024-11918-2
- Ryu S, Deshmukh S, Timmerman RD, et al. Stereotactic radiosurgery vs conventional radiotherapy for localized vertebral metastases of the spine: Phase 3 results of NRG Oncology/RTOG 0631 randomized clinical trial. JAMA Oncol. 2023;9(6):800-807. doi: 10.1001/JAMAONCOL.2023.0356
- Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physiol Rev. 2019;99(1): 665-706. doi: 10.1152/physrev.00067.2017
- Wilkinson HN, Hardman MJ. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):200223. doi: 10.1098/RSOB.200223
- Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Cell Mol Biol. 2024;25:599-616. doi: 10.1038/s41580-024-00715-1
- Jagetia GC, Rajanikant GK. Acceleration of wound repair by curcumin in the excision wound of mice exposed to different doses of fractionated γ radiation. Int Wound J. 2012;9(1):76-92. doi: 10.1111/j.1742-481X.2011.00848.x
- Jagetia G, Rao KVNM. Hesperidin treatment abates radiation-induced delay in healing of deep cutaneous excision wound of mice hemi-body exposed to different doses of γ-radiation. Clin Dermatol Dermat. 2018;1(1):104.
- Jagetia GC, Rao KVNM. Hesperidin, a citrus bioflavonoid potentiates repair and regeneration of deep dermal excision wounds of mice whole body exposed to different doses of 60Co γ-radiation. Clin Dermatol. 2018;3(2):000147. doi: 10.23880/cdoaj-16000147
- Son B, Lee S, Kim H, et al. Low dose radiation attenuates inflammation and promotes wound healing in a mouse burn model. J Dermatol Sci. 2019;96(2):81-89. doi: 10.1016/J.JDERMSCI.2019.10.004
- Wijerathne H, Langston JC, Yang Q, et al. Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother Oncol. 2021;158:21-32. doi: 10.1016/J.RADONC.2021.02.007
- Kameni LE, Januszyk M, Berry CE, et al. A review of radiation-induced vascular injury and clinical impact. Ann Plast Surg. 2024;92(2):181-185. doi: 10.1097/SAP.0000000000003723
- Pendleton MM, Emerzian SR, Liu J, et al. Effects of ex vivo ionizing radiation on collagen structure and whole-vertebrae. Bone. 2019;128:115043. doi: 10.1016/j.bone.2019.115043
- Rudolph R, Berg J Vande, Schneider JA, Fisher JC, Poolman WL. Slowed growth of cultured fibroblasts from human radiation wounds. Plast Reconstr Surg. 1988;82(4):669-675. doi: 10.1097/00006534-198810000-00019
- Kiang JG, Garrison BR, Burns TM, et al. Wound trauma alters ionizing radiation dose assessment. Cell Biosci. 2012;2(1):20. doi: 10.1186/2045-3701-2-20
- Green DE, Rubin CT. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone. 2014;63:87-94. doi: 10.1016/J.BONE.2014.02.018
- Lumniczky K, Impens N, Armengol G, et al. Low dose ionizing radiation effects on the immune system. Environ Int. 2021;149:106212. doi: 10.1016/J.ENVINT.2020.106212
- Nepon H, Safran T, Reece EM, Murphy AM, Vorstenbosch J, Davison PG. Radiation-induced tissue damage: Clinical consequences and current treatment options. Semin Plast Surg. 2021;35(3):181-188. doi: 10.1055/S-0041-1731464
- Loinard C, Ribault A, Lhomme B, et al. HuMSC-EV induce monocyte/macrophage mobilization to orchestrate neovascularization in wound healing process following radiation injury. Cell death Discov. 2023;9(1):38. doi: 10.1038/S41420-023-01335-Y
- Vegesna V, Withers HR, Holly FE, McBride WH. The effect of local and systemic irradiation on impairment of wound healing in mice. Radiat Res. 2005;135(3):434-433.
- Ozbek N, Guneren E, Yildiz L, Meydan D, Cakir S, Coskun M. The effect of pre-operative conventional and hyperfractionated radiotherapy schedules on wound healing and tensile strength in rats: An experimental study. Int J Oral Maxillofac Surg. 2005;34(2):185-192. doi: 10.1016/J.IJOM.2004.05.005
- Kulshrestha S, Chawla R, Singh S, et al. Protection of sildenafil citrate hydrogel against radiation-induced skin wounds. Burns. 2020;46(5):1157-1169. doi: 10.1016/J.BURNS.2019.11.020
- Orsted H. Radiation skin reaction. Can Nurse. 1989;85(9): 30-31.
- Olascoaga A, Vilar-Compte D, Poitevin-Chacón A, Contreras-Ruiz J. Wound healing in radiated skin: Pathophysiology and treatment options. Int Wound J. 2008;5(2):246-257. doi: 10.1111/J.1742-481X.2008.00436.X
- Song S, Cheng T. The effect of systemic and local irradiation on wound macrophages and the repair promoting action of phenytoin sodium. Honghua Yi Xue Za Zhi. 1997;77(1):54-57.
- Song S, Cheng T, Lin Y. Influence of modulatory activity of wound fluid on the characteristics of fibroblasts from irradiation and the action of phenytoin sodium. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 1999;13(1):47-50.
- Levenson SM, Gruber CA, Rettura G, Gruber DK, Demetriou AA, Seifter E. Supplemental vitamin A prevents the acute radiation-induced defect in wound healing. Ann Surg. 1984;200(4):494-512. doi: 10.1097/00000658-198410000-00011
- Stromberg LR, Mclaughlin MM, Donati RM. Combined surgical and radiation injury. 3. The effect of pre-irradiation radioprotective drug treatment. Proc Soc Exp Biol Med. 1968;129(1):140-143. doi: 10.3181/00379727-129-33270
- Donati RM. Combined surgical and radiation injury. IV. Effect of antimicrobials on the wound healing pattern of the x-irradiated rat. Arch Surg. 1971;102(2):132-135. doi: 10.1001/ARCHSURG.1971.01350020042011
- Mustoe TA, Purdy J, Gramates P, Deuel TF, Thomason A, Pierce GF. Reversal of impaired wound healing in irradiated rats by platelet-derived growth factor-BB. Am J Surg. 1989;158(4):345-350. doi: 10.1016/0002-9610(89)90131-1
- Hom DB, Unger GM, Pernell KJ, Manivel JC. Improving surgical wound healing with basic fibroblast growth factor after radiation. Laryngoscope. 2005;115(3):412-422. doi: 10.1097/01.MLG.0000157852.01402.12
- Kinoshita N, Tsuda M, Hamuy R, et al. The usefulness of basic fibroblast growth factor for radiation-exposed tissue. Wound Repair Regen. 2012;20(1):91-102. doi: 10.1111/J.1524-475X.2011.00758.X
- Jagetia GC, Rajanikant GK, Rao SK. Evaluation of the effect of ascorbic acid treatment on wound healing in mice exposed to different doses of fractionated gamma radiation. Radiat Res. 2003;159(3):371-380. doi: 10.1667/0033-7587(2003)159[0371:EOTEOA]2.0.CO;2
- Jagetia GC, Venkatesha VA. Effect of mangiferin on radiation-induced micronucleus formation in cultured human peripheral blood lymphocytes. Environ Mol Mutagen. 2005;46(1):12-21. doi: 10.1002/em.20124
- Jagetia GC, Ravikiran PB. Acceleration of wound repair and regeneration by Nigella sativa in the deep dermal excision wound of mice whole body exposed to different doses of γ-radiation. Am Res J Med Surg Orig Artic. 2015;1:1-17.
- Vabeiryureilai M, Lalrinzuali K, Jagetia GC. Determination of anti-inflammatory and analgesic activities of a citrus bioflavanoid, hesperidin in Mice. Immunochem Immunopathol. 2015;1(2):107. doi: 10.4172/2469-9756.1000107
- Yamamoto M, Suzuki A, Jokura H, Yamamoto N, Hase T. Glucosyl hesperidin prevents endothelial dysfunction and oxidative stress in spontaneously hypertensive rats. Nutrition. 2008;24(5):470-476. doi: 10.1016/j.nut.2008.01.010
- Iranshahi M, Rezaee R, Parhiz H, Roohbakhsh A, Soltani F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci. 2015;137:125-132. doi: 10.1016/j.lfs.2015.07.014
- Jagetia GC. A review on the anti-inflammatory activity of hesperidin, a bioflavonoid synthesized by citrus fruits. J Immunol Inflamm Dis Ther. 2018;1:10037. doi: 10.31579/2637-8876/007
- Anwar A, Masri A, Rao K, et al. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci Rep. 2019;9(1):3122. doi: 10.1038/s41598-019-39528-0
- Rasquel-Oliveira FS, Manchope MF, Staurengo-Ferrari L, et al. Hesperidin methyl chalcone interacts with NFκB Ser276 and inhibits zymosan-induced joint pain and inflammation, and RAW 264.7 macrophage activation. Inflammopharmacology. 2020;28(4):979-992. doi: 10.1007/s10787-020-00686-7
- Valls RM, Pedret A, Calderón-Pérez L, et al. Effects of hesperidin in orange juice on blood and pulse pressures in mildly hypertensive individuals: A randomized controlled trial (Citrus study). Eur J Nutr. 2021;60(3):1277-1288. doi: 10.1007/s00394-020-02279-0
- Tanaka T, Makita H, Kawabata K, et al. Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin. Carcinogenesis. 1997;18(5):957-965. doi: 10.1093/carcin/18.5.957
- Vabeiryureilai M, Lalrinzuali K, Jagetia GC. Chemopreventive effect of hesperidin, a citrus bioflavonoid in two stage skin carcinogenesis in Swiss albino mice. Heliyon. 2019;5(10):e02521. doi: 10.1016/j.heliyon.2019.e02521
- Hermawan A, Khumaira A, Ikawati M, et al. Identification of key genes of hesperidin in inhibition of breast cancer stem cells by functional network analysis. Comput Biol Chem. 2021;90:107427. doi: 10.1016/j.compbiolchem.2020.107427
- Kurowska EM, Spence JD, Jordan J, et al. HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am J Clin Nutr. 2000;72(5):1095-1100. doi: 10.1093/ajcn/72.5.1095
- Chiba H, Uehara M, Wu J, et al. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr. 2003;133(6):1892-1897. doi: 10.1093/jn/133.6.1892
- Hou M, Man M, Man W, et al. Topical hesperidin improves epidermal permeability barrier function and epidermal differentiation in normal murine skin. Exp Dermatol. 2012;21(5):337-340. doi: 10.1111/j.1600-0625.2012.01455.x
- Dobiaš L, Petrová M, Vojtko R, Kristová V. Long-term treatment with hesperidin improves endothelium-dependent vasodilation in femoral artery of spontaneously hypertensive rats: The involvement of NO-synthase and Kv channels. Phyther Res. 2016;30(10):1665-1671. doi: 10.1002/ptr.5670
- Akamo AJ, Ojelabi AO, Somade OT, et al. Hesperetin-7- O-rhamnoglucoside ameliorates dichlorvos-facilitated cardiotoxicity in rats by counteracting ionoregulatory, ion pumps, redox, and lipid homeostasis disruptions. Toxicol Reports. 2024;13:101698. doi: 10.1016/J.TOXREP.2024.101698
- Li Y, Kandhare AD, Mukherjee AA, Bodhankar SL. Acute and sub-chronic oral toxicity studies of hesperidin isolated from orange peel extract in Sprague Dawley rats. Regul Toxicol Pharmacol. 2019;105:77-85. doi: 10.1016/j.yrtph.2019.04.001
- Mayumi K, Seiko T, Masa-Aki S, Masao H, Shoji F, Nobuyuki I. Subchronic toxicity study of methyl hesperidin in mice. Toxicol Lett. 1993;69(1):37-44. doi: 10.1016/0378-4274(93)90143-L
- Abdel-Raheem IT, Abdel-Ghany AA. Hesperidin alleviates doxorubicin-induced cardiotoxicity in rats. J Egypt Natl Canc Inst. 2009;21(2):175-184.
- Merzoug S, Toumi ML. Effects of hesperidin on formaldehyde-induced toxicity in pregnant rats. EXCLI J. 2017;16:400-413. doi: 10.17179/EXCLI2017-142
- Caglayan C, Kandemir FM, Darendelioğlu E, Küçükler S, Ayna A. Hesperidin protects liver and kidney against sodium fluoride-induced toxicity through anti-apoptotic and anti-autophagic mechanisms. Life Sci. 2021;281:119730. doi: 10.1016/J.LFS.2021.119730
- Li W, Kandhare AD, Mukherjee AA, Bodhankar SL. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways. EXCLI J. 2018;17:399-419. doi: 10.17179/excli2018-1036
- Pradeep K, Park SH, Ko KC. Hesperidin a flavanoglycone protects against γ-irradiation induced hepatocellular damage and oxidative stress in Sprague-Dawley rats. Eur J Pharmacol. 2008;587(1-3):273-280. doi: 10.1016/j.ejphar.2008.03.052
- Wang Y, Yu H, Zhang J, Gao J, Ge X, Lou G. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest. BMC Cancer. 2015;15(1):682. doi: 10.1186/s12885-015-1706-y
- Zhao W, Chen Y, Zhang X. Hesperidin-triggered necrosis-like cell death in skin cancer cell line a431 might be prompted by ros mediated alterations in mitochondrial membrane potential. Int J Clin Exp Med. 2018;11(3):1948-1954.
- Xiong H, Wang J, Ran Q, et al. Hesperidin: A therapeutic agent for obesity. Drug Des Devel Ther. 2019;13:3855-3866. doi: 10.2147/DDDT.S227499
- Musa AE, Omyan G, Esmaely F, Shabeeb D. Radioprotective effect of hesperidin: A systematic review. Medicina (Kaunas). 2019;55(7):370. doi: 10.3390/medicina55070370
- Woessner JF Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93(2):440-447. doi: 10.1016/0003-9861(61)90291-0
- Burton K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956;62(2):315-323. doi: 10.1042/bj0620315
- Hevel JM, Marletta MA. Nitric-oxide synthase assays. Methods Enzymol. 1994;233:250-258. doi: 10.1016/S0076-6879(94)33028-X
- Sazuka Y, Tanizawa H, Takino Y. Effect of adriamycin on the activities of superoxide dismutase, glutathione peroxidase and catalase in tissues of mice. Jpn J Cancer Res. 1989;80(1):89-94. doi: 10.1111/J.1349-7006.1989.TB02250.X
- Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67-78. doi: 10.1016/0304-4165(79)90289-7
- Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-310. doi: 10.1016/S0076-6879(78)52032-6
- Waterborg JH, Matthews HR. The Lowry method for protein quantitation. Methods Mol Biol. 1994;32:1-4. doi: 10.1385/0-89603-268-X:1
- Biancotto S, Malizia A, Pinto M, Contessa GM, Coniglio A, D’Arienzo M. Analysis of a dirty bomb attack in a large metropolitan area: Simulate the dispersion of radioactive materials. J Instrum. 2020;15:P02019. doi: 10.1088/1748-0221/15/02/P02019
- Brambilla S, Nelson MA, Brown MJ. Dirty bomb source term characterization and downwind dispersion: Review of experimental evidence. J Environ Radioact. 2023;263:107166. doi: 10.1016/J.JENVRAD.2023.107166
- Niichel M, Brackett M, Purcell B, Gologorsky D, Werve B. Covert system for detecting nuclear dirty bombs in public venues. Nucl Sci Technol. 2024;2:2. doi: 10.12688/NUCLSCITECHNOLOPENRES.17455.1
- Abouarab MH, Salem IL, Degheidy MM, et al. Therapeutic options and postoperative wound complications after extremity soft tissue sarcoma resection and postoperative external beam radiotherapy. Int Wound J. 2018;15(1):148-158. doi: 10.1111/IWJ.12851
- Albano D, Benenati M, Bruno A, et al. Imaging side effects and complications of chemotherapy and radiation therapy: A pictorial review from head to toe. Insights Imaging. 2021;12(1):76. doi: 10.1186/S13244-021-01017-2
- Berger L, Grimm A, Sütterlin M, et al. Major complications after intraoperative radiotherapy with low-energy X-rays in early breast cancer. Strahlenther Onkol. 2024;200(4):276-286. doi: 10.1007/S00066-023-02128-Z
- Yan HK, Huang J, Yang ZH, et al. Comparison of the incidence of wound complications with preoperative and postoperative radiotherapy in patients with extremity soft tissue sarcoma resection: A meta‐analysis. Int Wound J. 2024;21(2):e14441. doi: 10.1111/IWJ.14441
- Kaplani K, Koutsi S, Armenis V, et al. Wound healing related agents: Ongoing research and perspectives. Adv Drug Deliv Rev. 2018;129:242-253. doi: 10.1016/j.addr.2018.02.007
- Vabeiryureilai M, Lalrinzuali K, Jagetia GC. NF-κB and COX-2 repression with topical application of hesperidin and naringin hydrogels augments repair and regeneration of deep dermal wounds. Burns. 2022;48(1):132-145. doi: 10.1016/j.burns.2021.04.016
- Jagetia GC, Rajanikant GK. Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole-body exposed to various doses of gamma-radiation. J Surg Res. 2004;120(1):127-138. doi: 10.1016/j.jss.2003.12.003
- Jagetia GC, Rajanikant GK. Curcumin treatment enhances the repair and regeneration of wounds in mice exposed to hemibody γ-irradiation. Plast Reconstr Surg. 2005;115(2):515-528. doi: 10.1097/01.PRS.0000148372.75342.D9
- Jacobson LK, Johnson MB, Dedhia RD, Niknam-Bienia S, Wong AK. Impaired wound healing after radiation therapy: A systematic review of pathogenesis and treatment. JPRAS Open. 2017;13:92-105. doi: 10.1016/J.JPRA.2017.04.001
- Diaz C, Hayward CJ, Safoine M, et al. Ionizing radiation mediates dose dependent effects affecting the healing kinetics of wounds created on acute and late irradiated skin. Surgeries. 2021;2(1):35-57. doi: 10.3390/SURGERIES2010004
- Jagetia GC, Rao KVNM. Topical application of hesperidin, a citrus bioflavanone accelerates healing of full thickness dermal excision wounds in mice exposed to 6 Gy of whole body γ-radiation. J Clin Res Dermatology. 2017;4(3):1-8. doi: 10.15226/2378-1726/4/3/00162
- Jagetia GC, Rao KVNM. Acceleration in the repair and regenerative responses by different doses of hesperidin in the deep full thickness cutaneous wound of mice whole body exposed to 6 Gy of γ-radiation. Nurs Healthc Int J. 2018;2(3):000149.
- Jagetia GC, Rajanikant GK, Rao KVNM. Modulation of radiation-induced delay in the wound healing by ascorbic acid in mice exposed to different doses of hemi-body gamma radiation. Wounds. 2003;15(10):324-338.
- Jagetia GC, Rajanikant GK, Baliga MS, Rao KVNM, Kumar P. Augmentation of wound healing by ascorbic acid treatment in mice exposed to gamma-radiation. Int J Radiat Biol. 2004;80(5):347-354. doi: 10.1080/09553000410001692744
- Jagetia GC, Rajanikant GK. Topical application of curcumin augments healing of deep dermal excision wound of mice exposed to whole-body gamma radiation. J Nurs Healthc. 2017;2(1):1-7.
- Samadi A, Buro J, Dong X, et al. Topical α-Gal nanoparticles enhance wound healing in radiated skin. Skin Pharmacol Physiol. 2022;35(1):31-40. doi: 10.1159/000518015
- Antonio JDS, Jacenko O, Fertala A, Orgel JPRO. Collagen structure-function mapping informs applications for regenerative medicine. Bioeng (Basel). 2020;8(1):3. doi: 10.3390/BIOENGINEERING8010003
- Xue M, Jackson CJ. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care (New Rochelle). 2015;4(3):119-136. doi: 10.1089/wound.2013.0485
- Gardeazabal L, Izeta A. Elastin and collagen fibres in cutaneous wound healing. Exp Dermatol. 2024;33(3):e15052. doi: 10.1111/EXD.15052
- Macarak EJ, Wermuth PJ, Rosenbloom J, Uitto J. Keloid disorder: Fibroblast differentiation and gene expression profile in fibrotic skin diseases. Exp Dermatol. 2021;30(1):132-145. doi: 10.1111/EXD.14243
- Hofmann E, Fink J, Pignet AL, et al. Human in vitro skin models for wound healing and wound healing disorders. Biomedicines. 2023;11(4):1056. doi: 10.3390/BIOMEDICINES11041056
- Mathew-Steiner S, Roy S, Sen C. Collagen in wound healing. Bioeng (Basel). 2021;8:63. doi: 10.3390/bioengineering8050063
- Jagetia GC, Rajanikant GK, Rao KVNM. Ascorbic acid increases healing of excision wounds of mice whole body exposed to different doses of gamma-radiation. Burns. 2007;33(4):484-494. doi: 10.1016/j.burns.2006.08.025
- Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Giuffrida Stella AM. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat Rev Neurosci. 2007;8(10):766-775. doi: 10.1038/NRN2214
- Malone-Povolny MJ, Maloney SE, Schoenfisch MH. Nitric oxide therapy for diabetic wound healing. Adv Healthc Mater. 2019;8(12):e1801210. doi: 10.1002/ADHM.201801210
- Pinto RV, Carvalho S, Antunes F, Pires J, Pinto ML. Emerging nitric oxide and hydrogen sulfide releasing carriers for skin wound healing therapy. ChemMedChem. 2022;17(1):e202100429. doi: 10.1002/CMDC.202100429
- Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell. 2022;185(16):2853-2878. doi: 10.1016/J.CELL.2022.06.010
- Schäffer M, Weimer W, Wider S, et al. Differential expression of inflammatory mediators in radiation-impaired wound healing. J Surg Res. 2002;107(1):93-100. doi: 10.1006/jsre.2002.6494
- Doyle J, Li Y, Salloum A, FitzGerald TJ, Walton RL. The effects of radiation on neovascularization in a rat model. Plast Reconstr Surg. 1996;98(1):129-134. doi: 10.1097/00006534-199607000-00020
- Dahlberg WK, Little JB. Response of dermal fibroblast cultures from patients with unusually severe responses to radiotherapy and from ataxia telangiectasia heterozygotes to fractionated radiation. Clin Cancer Res. 1995;1(8):785-790.
- Zelman D, Song IC, Porteous DD, Bromberg BE. The effect of total body irradiation on wound healing and the hematopoietic system in mice. Bull N Y Acad Med. 1969;45(3):293-300.
- Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxidants Redox Signal. 2014;20(9):1447-1462. doi: 10.1089/ARS.2013.5635
- Lu Y, Hu M, Zhang Z, Qi Y, Wang J. The regulation of hematopoietic stem cell fate in the context of radiation. Radiat Med Prot. 2020;1(1):31-34. doi: 10.1016/J.RADMP.2020.01.002
- Stromberg LR, Woodward KT, Mahin DT, Donati RM. Altered wound healing in X-irradiated rats: The effect of bone marrow shielding. Experientia. 1967;23(12):1064-1065. doi: 10.1007/BF02136454
- Wang J, Boerma M, Fu Q, Hauer-Jensen M. Radiation responses in skin and connective tissues: Effect on wound healing and surgical outcome. Hernia. 2006;10(6):502-506. doi: 10.1007/S10029-006-0150-Y
- Schuster R, Younesi F, Ezzo M, Hinz B. The role of myofibroblasts in physiological and pathological tissue repair. Cold Spring Harb Perspect Biol. 2023;15(1):a041231. doi: 10.1101/CSHPERSPECT.A041231
- Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol. 2024;25(8):617-638. doi: 10.1038/S41580-024-00716-0
- Bumann J, Santo-Holtje L, Loffler H, Bamberg M, Rodemann HP. Radiation-induced alterations of the proliferation dynamics of human skin fibroblasts after repeated irradiation in the subtherapeutic dose range. Strahlenther Onkol. 1995;171(1):35-41.
- Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol. 2022;10:958381. doi: 10.3389/FBIOE.2022.958381
- Bellini A, Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest. 2007;87(9):858-870. doi: 10.1038/LABINVEST.3700654
- Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev. 2021;302(1):147-162. doi: 10.1111/IMR.12972
- Comazzetto S, Shen B, Morrison SJ. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Develomental Cell. 2021;56(13):1848-1860. doi: 10.1016/j.devcel.2021.05.018
- Jagetia GC, Rajanikant GK, Rao SK, Baliga M. Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated gamma radiation. Clin Chim Acta. 2003;332(1-2):111-121. doi: 10.1016/S0009-8981(03)00132-3
- Jagetia GC, Rajanikant GK. Curcumin stimulates the antioxidant mechanisms in mouse skin exposed to fractionated γ-irradiation. Antioxidants (Basel). 2015;4(1):25-41. doi: 10.3390/ANTIOX4010025
- Jagetia GC, Ganapathi NG, Venkatesh P, Rao N, Baliga MS. Evaluation of the radioprotective effect of Liv 52 in mice. Environ Mol Mutagen. 2006;47(7):490-502. doi: 10.1002/em.20218
- Jagetia GC, Rao KVNM. Hesperidin, a citrus bioflavonoid reduces the oxidative stress in the skin of mouse exposed to partial body γ-radiation. Transcriptomics. 2015;3:2. doi: 10.4172/2329-8936.1000111
- Carvalho MTB, Araújo-Filho HG, Barreto AS, Quintans- Júnior LJ, Quintans JSS, Barreto RSS. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine. 2021;90:153636. doi: 10.1016/J.PHYMED.2021.153636
- Zulkefli N, Che Zahari CNM, Sayuti NH, et al. Flavonoids as potential wound-healing molecules: Emphasis on pathways perspective. Int J Mol Sci. 2023;24(5):4607. doi: 10.3390/IJMS24054607
- Choi SS, Lee SH, Lee KA. A comparative study of hesperetin, hesperidin and hesperidin glucoside: Antioxidant, anti-inflammatory, and antibacterial activities in vitro. Antioxidants (Basel). 2022;11(8):1618. doi: 10.3390/ANTIOX11081618
- Kim HJ, Lee SH, Hong SK, Gil BI, Lee KA. In vitro biological activities of hesperidin-related compounds with different solubility. Antioxidants (Basel). 2024;13(6):727. doi: 10.3390/ANTIOX13060727
- Ambrozova N, Ulrichova J, Galandakova A. Models for the study of skin wound healing. The role of Nrf2 and NF-κB. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017;161(1):1-13. doi: 10.5507/bp.2016.063
- Lalrinzuali K, Vabeiryureilai M, Jagetia GC. Topical application of stem bark ethanol extract of Sonapatha, Oroxylum indicum (L.) Kurz accelerates healing of deep dermal excision wound in Swiss albino mice. J Ethnopharmacol. 2018;227:290-299. doi: 10.1016/j.jep.2018.08.018
- Tong J, Hu C, Wu Y, Liu Q, Sun D. Radiation-induced NF-κB activation is involved in cochlear damage in mice via promotion of a local inflammatory response. J Radiat Res. 2023;64(1):63-72. doi: 10.1093/JRR/RRAC068
- Leite CDS, Bonafé GA, Pires OC, et al. Dipotassium glycyrrhizininate improves skin wound healing by modulating inflammatory process. Int J Mol Sci. 2023;24(4):3839. doi: 10.3390/IJMS24043839
- Calabrese V, Cornelius C, Stella AMG, Calabrese EJ. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: Role of hormesis and vitagenes. Neurochem Res. 2010;35(12):1880-1915. doi: 10.1007/S11064-010-0307-Z
- Calabrese V, Wenzel U, Piccoli T, et al. Investigating hormesis, aging, and neurodegeneration: From bench to clinics. Open Med. 2024;19(1):20240986. doi: 10.1515/MED-2024-0986
- Franco R, Navarro G, Martínez-Pinilla E. Plant-derived compounds, vitagens, vitagenes and mitochondrial function. PharmaNutrition. 2022;19:100287. doi: 10.1016/J.PHANU.2021.100287
- Miler M, Živanović J, Kovačević S, et al. Citrus flavanone effects on the Nrf2-Keap1/GSK3/NF-κB/NLRP3 regulation and corticotroph-stress hormone loop in the old pituitary. Int J Mol Sci. 2024;25(16):8918. doi: 10.3390/IJMS25168918
- Banerjee J, Lodhi N, Nguyen BN. The role of poly(ADP-ribose) polymerase-1 in cutaneous wound healing. Adv Wound Care (New Rochelle). 2019;8(12):634-643. doi: 10.1089/WOUND.2018.0821
- Zhao G, Liu F, Liu Z, et al. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res Ther. 2020;11:174. doi: 10.1186/s13287-020-01616-8