AccScience Publishing / JCTR / Volume 7 / Issue 6 / DOI: 10.18053/jctres.07.202106.011
REVIEW ARTICLE

Personalizing first-line treatment in advanced colorectal cancer: Present status and future perspectives

Rodrigo Motta1,2 Santiago Cabezas-Camarero3 Cesar Torres-Mattos4,5 Alejandro Riquelme6 Ana Calle1,7 Paola Montenegro2,8 Miguel J. Sotelo1,5,7*
Show Less
1 Department of Medical Oncology, Aliada Cancer Center, Lima, Peru
2 Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
3 Department of Medical Oncology, Hospital Universitario Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
4 Department of Medical Oncology, Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru
5 Oncological Research Unit, Clínica San Gabriel, Lima, Peru
6 Department of Medical Oncology, Hospital Universitario Infanta Cristina, Madrid, Spain
7 Department of Medical Oncology, Hospital María Auxiliadora, Lima, Peru
8 Auna-OncoSalud Network, Lima, Peru
Submitted: 6 August 2021 | Revised: 12 October 2021 | Accepted: 12 November 2021 | Published: 29 November 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background: Colorectal cancer is one of the most frequent neoplasms worldwide, and the majority of patients are diagnosed in advanced stages. Metastatic colorectal cancer (mCRC) harbors several mutations with different prognostic and predictive values; KRAS, NRAS, and BRAF mutations are the best known. Indeed, RAS and BRAF molecular status are associated with a different response to monoclonal antibodies (Anti-epidermal growth factor receptor and anti-vascular endothelial growth factor receptor agents), which are usually added to chemotherapy in first-line, and thus allow to select the optimal therapy for patients with mCRC. Furthermore, sidedness is an important predictive and prognostic factor in mCRC, which is explained by the different molecular profile of left and rightsided tumors. Recently, microsatellite instability-high has emerged as a predictive factor of response and survival from immune checkpoint inhibitors in mCRC. Finally, several other alterations have been described in lower frequencies, such as human epidermal growth factor receptor-2 overexpression/ amplification, PIK3CA pathway alterations, phosphatase and tension homolog loss, and hepatocyte growth factor/mesenchymal-epithelial transition factor pathway dysregulation, with several targeted therapies already demonstrating activity or being tested in currently ongoing clinical trials.
Aim: To review the importance of studying the predictive and prognostic roles of the molecular profile of mCRC, the changes occurred in recent years and how they would potentially change in the near future, to guide physicians in treatment decisions.
Relevance for Patients: Today, several different therapeutic options can be offered to patients in the first-line setting of mCRC. Therapies at present approved or under investigation in clinical trials will be thoroughly reviewed, with special emphasis on the molecular rationale behind them. Understanding the molecular status, resistance mechanisms and potential new druggable targets may allow physicians to choose the best therapeutic option in the first-line mCRC.

Keywords
metastatic colorectal cancer
personalized therapy
precision medicine
first-line
mutation
Conflict of interest
The authors declare no conflicts of interest.
References

[1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71:209-49.
[2] Haggar FA, Boushey RP. Colorectal Cancer Epidemiology: Incidence, Mortality, Survival, and Risk Factors. Clin Colon Rectal Surg 2009;22:191-7.
[3] Bogaert J, Prenen H. Molecular Genetics of Colorectal Cancer. Ann Gastroenterol 2014;27:9-14.
[4] Morano F, Corallo S, Lonardi S, Raimondi A, Cremolini C, Rimassa L, et al. Negative Hyperselection of Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer Who Received Panitumumab-Based Maintenance Therapy. J Clin Oncol 2019;37:3099-110.
[5] Huang Y, Liu N, Liu J, Liu Y, Zhang C, Long S, Luo G, Zhang L, Zhang Y. Mutant p53 Drives Cancer Chemotherapy Resistance Due to Loss of Function on Activating Transcription of PUMA. Cell Cycle 2019;18:3442-55.
[6] Goetz LH, Schork NJ. Personalized Medicine: Motivation, Challenges, and Progress. Fertil Steril 2018;109:952-63.
[7] Arteaga CL, Engelman JA. ERBB Receptors: From Oncogene Discovery to Basic Science to MechanismBased Cancer Therapeutics. Cancer Cell 2014;25:282-303.
[8] Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB Family in Cancer: Couples Therapy. Nat Rev Cancer 2013;13:663-73.
[9] Hsu JL, Hung MC. The Role of HER2, EGFR, and other Receptor Tyrosine Kinases in Breast Cancer. Cancer Metastasis Rev 2016;35:575-88.
[10] Rotow J, Bivona TG. Understanding and Targeting Resistance Mechanisms in NSCLC. Nat Rev Cancer 2017;17:637-58.
[11] Roskoski R Jr. The ErbB/HER Family of Protein-tyrosine Kinases and Cancer. Pharmacol Res 2014;79:34-74.
[12] Ishibashi K, Fukumoto Y, Hasegawa H, Abe K, Kubota S, Aoyama K, et al. Nuclear ErbB4 Signaling through H3K9me3 is Antagonized by EGFR-Activated c-Src. J Cell Sci 2013;126 Pt 2:625-37.
[13] Downward J. Targeting RAS Signalling Pathways in Cancer Therapy. Nat Rev Cancer 2003;3:11-22.
[14] Ray S. The Cell: A Molecular Approach. Yale J Biol Med 2014;87:603-4.
[15] Buday L, Downward J. Epidermal Growth Factor Regulates p21ras through the Formation of a Complex of Receptor, Grb2 Adapter Protein, and Sos Nucleotide Exchange Factor. Cell 1993;73:611-20.
[16] Roskoski R Jr. Small Molecule Inhibitors Targeting the EGFR/ErbB Family of Protein-tyrosine Kinases in Human Cancers. Pharmacol Res 2019;139:395-411.
[17] Vecchione L, Jacobs B, Normanno N, Ciardiello F, Tejpar S. EGFR-targeted Therapy. Exp Cell Res 2011;317:2765-71.
[18] Wang Z. ErbB Receptors and Cancer. Methods Mol Biol 2017;1652:3-35. 
[19] Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS Oncogenes: Weaving a Tumorigenic Web. Nat Rev Cancer 2011;11:761-74.
[20] Giehl K. Oncogenic Ras in Tumour Progression and Metastasis. Biol Chem 2005;386:193-205.
[21] Lowy DR, Willumsen BM. Function and Regulation of Ras. Annu Rev Biochem 1993;62:851-91.
[22] Martini G, Dienstmann R, Ros J, Baraibar I, CuadraUrteaga JL, Salva F, et al. Molecular Subtypes and the Evolution of Treatment Management in Metastatic Colorectal Cancer. Ther Adv Med Oncol 2020;12:1758835920936089.
[23] Ünlü M, Uzun E, Bengi G, Sağol Ö, Sarıoğlu S. Molecular Characteristics of Colorectal Hyperplastic Polyp Subgroups. Turk J Gastroenterol 2020;31:573-80.
[24] Fearon ER, Vogelstein B. A Genetic Model for Colorectal Tumorigenesis. Cell 1990;61:759-67.
[25] Li W, Qiu T, Zhi W, Shi S, Zou S, Ling Y, et al. Colorectal Carcinomas with KRAS Codon 12 Mutation are Associated with more Advanced Tumor Stages. BMC Cancer 2015;15:340.
[26] Goldberg RM. Cetuximab. Nat Rev Drug Discov 2005;Suppl: S10-1.
[27] Irahara N, Baba Y, Nosho K, Shima K, Yan L, DiasSantagata D, et al. NRAS Mutations are Rare in Colorectal Cancer. Diagn Mol Pathol 2010;19:157-63.
[28] Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, et al. K-ras is an Essential Gene in the Mouse with Partial Functional Overlap with N-ras. Genes Dev 1997;11:2468-81.
[29] Malumbres M, Barbacid M. RAS Oncogenes: The First 30 Years. Nat Rev Cancer 2003;3:459-65.
[30] Brand TM, Wheeler DL. KRAS Mutant Colorectal Tumors: Past and Present. Small GTPases 2012;3:34-9.
[31] Jancík S, Drábek J, Radzioch D, Hajdúch M. Clinical Relevance of KRAS in Human Cancers. J Biomed Biotechnol 2010;2010:150960.
[32] Karnoub AE, Weinberg RA. Ras Oncogenes: Split Personalities. Nat Rev Mol Cell Biol 2008;9:517-31.
[33] Shields JM, Pruitt K, McFall A, Shaub A, Der CJ. Understanding Ras: “It ain’t Over til it’s Over”. Trends Cell Biol 2000;10:147-54.
[34] Pruitt K, Der CJ. Ras and Rho Regulation of the Cell Cycle and Oncogenesis. Cancer Lett 2001;171:1-10.
[35] Jänicke RU, Sohn D, Schulze-Osthoff K. The Dark Side of a Tumor Suppressor: Anti-Apoptotic p53. Cell Death Differ 2008;15:959-76.
[36] Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH, et al. Addition of Cetuximab to Oxaliplatin-based First-line Combination Chemotherapy for Treatment of Advanced Colorectal Cancer: Results of the Randomised Phase 3 MRC COIN trial. Lancet 2011;377:2103-14.
[37] Esteller M, González S, Risques RA, Marcuello E, Mangues R, Germà JR, et al. K-ras and p16 Aberrations Confer Poor Prognosis in Human Colorectal Cancer. J Clin Oncol 2001;19:299-304.
[38] Westra JL, Schaapveld M, Hollema H, de Boer JP, Kraak MM, de Jong D, et al. Determination of TP53 Mutation is more Relevant than Microsatellite Instability Status for the Prediction of Disease-free Survival in Adjuvant-treated Stage III Colon Cancer Patients. J Clin Oncol 2005;23:5635-43.
[39] Siddiqui AD, Piperdi B. KRAS Mutation in Colon Cancer: A Marker of Resistance to EGFR-I Therapy. Ann Surg Oncol 2010;17:1168-76.
[40] Tran B, Kopetz S, Tie J, Gibbs P, Jiang ZQ, Lieu CH, et al. Impact of BRAF Mutation and Microsatellite Instability on the Pattern of Metastatic Spread and Prognosis in Metastatic Colorectal Cancer. Cancer 2011;117:4623-32.
[41] Tveit KM, Guren T, Glimelius B, Pfeiffer P, Sorbye H, Pyrhonen S, et al. Phase III Trial of Cetuximab with Continuous or Intermittent Fluorouracil, Leucovorin, and Oxaliplatin (Nordic FLOX) Versus FLOX Alone in
First-line Treatment of Metastatic Colorectal Cancer: The NORDIC-VII Study. J Clin Oncol 2012;30:1755-62.
[42] Issa JP. CpG Island Methylator Phenotype in Cancer. Nat Rev Cancer 2004;4:988-93.
[43] Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG Island Methylator Phenotype in Colorectal Cancer. Proc Natl Acad Sci U S A 1999;96:8681-6.
[44] Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG Island Methylator Phenotype Underlies Sporadic Microsatellite Instability and is Tightly Associated with BRAF Mutation in
Colorectal Cancer. Nat Genet 2006;38:787-93.
[45] Tol J, Nagtegaal ID, Punt CJ. BRAF Mutation in Metastatic Colorectal Cancer. N Engl J Med 2009;361:98-9.
[46] Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF Gene in Human Cancer. Nature 2002;417:949-54.
[47] Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK Mitogenactivated Protein Kinase Cascade for the Treatment of Cancer. Oncogene 2007;26:3291-310.
[48] Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/ RAS Oncogenes and Mismatch-repair Status. Nature 2002;418:934.
[49] Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and Angiopoietin Signaling in Tumor Angiogenesis and Metastasis. Trends Mol Med 2011;17:347-62.
[50] Goel HL, Mercurio AM. VEGF Targets the Tumour Cell. Nat Rev Cancer 2013;13:871-82.
[51] Ferrara N, Gerber HP, LeCouter J. The Biology of VEGF and its Receptors. Nat Med 2003;9:669-76.
[52] Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist Antibodies to Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2) as Anti-angiogenic Agents. Pharmacol Ther 2016;164:204-25. 
[53] Karaman S, Leppänen VM, Alitalo K. Vascular Endothelial Growth Factor Signaling in Development and Disease. Development 2018;145:dev151019.
[54] Koch S, Claesson-Welsh L. Signal Transduction by Vascular Endothelial Growth Factor Receptors. Cold Spring Harb Perspect Med 2012;2:a006502.
[55] Peng K, Bai Y, Zhu Q, Hu B, Xu Y. Targeting VEGFneuropilin Interactions: A Promising Antitumor Strategy. Drug Discov Today 2019;24:656-64.
[56] Simons M, Gordon E, Claesson-Welsh L. Mechanisms and Regulation of Endothelial VEGF Receptor Signalling. Nat Rev Mol Cell Biol 2016;17:611-25.
[57] Takahashi H, Shibuya M. The Vascular Endothelial Growth Factor (VEGF)/VEGF Receptor System and its Role under Physiological and Pathological Conditions. Clin Sci (Lond) 2005;109:227-41.
[58] Shibuya M. Vascular Endothelial Growth Factor (VEGF) and its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti-and Pro-Angiogenic Therapies. Genes Cancer 2011;2:1097-105.
[59] Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The Role of VEGF Receptors in Angiogenesis; Complex Partnerships. Cell Mol Life Sci 2006;63:601-15.
[60] Tarnawski AS, Ahluwalia A, Jones MK. Angiogenesis in Gastric Mucosa: An Important Component of Gastric Erosion and Ulcer Healing and its Impairment in Aging. J Gastroenterol Hepatol 2014;29 Suppl 4:112-23.
[61] Fransén K, Klintenäs M, Osterström A, Dimberg J, Monstein HJ, Söderkvist P. Mutation Analysis of the BRAF, ARAF and RAF-1 Genes in Human Colorectal Adenocarcinomas. Carcinogenesis 2004;25:527-33.
[62] Aparicio J, Esposito F, Serrano S, Falco E, Escudero P, Ruiz-Casado A, et al. Metastatic Colorectal Cancer. First Line Therapy for Unresectable Disease. J Clin Med 2020;9:3889.
[63] Marques RP, Duarte GS, Sterrantino C, Pais HL, Quintela A, Martins AP, et al. Triplet (FOLFOXIRI) Versus Doublet (FOLFOX or FOLFIRI) Backbone Chemotherapy as First-line Treatment of Metastatic Colorectal Cancer: A Systematic Review and Meta-analysis. Crit Rev Oncol Hematol 2017;118:54-62.
[64] Jindal V, Gupta R, Sahu KK, Rahi MS, Stender MJ, Jaiyesimi IA. Doublet (FOLFOX or FOLFIRI) Versus Triplet (FOLFOXIRI) Backbone Chemotherapy Regimen as First-line Treatment of Metastatic Colorectal Cancer: A Meta-analysis and Systematic Review. J Clin Oncol 2021;39 Suppl 15:3593-3.
[65] Bokemeyer C, Bondarenko I, Hartmann JT, de Braud F, Schuch G, Zubel A, et al. Efficacy According to Biomarker Status of Cetuximab Plus FOLFOX-4 as First-line Treatment for Metastatic Colorectal Cancer: The OPUS Study. Ann Oncol 2011;22:1535-46.
[66] Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M, et al. Addition of Cetuximab to Chemotherapy as First-line Treatment for KRAS Wildtype Metastatic Colorectal Cancer: Pooled Analysis of the CRYSTAL and OPUS Randomised Clinical Trials. Eur J Cancer 2012;48:1466-75.
[67] Stintzing S, Modest DP, Rossius L, Lerch MM, von Weikersthal LF, Decker T, et al. FOLFIRI Plus Cetuximab Versus FOLFIRI Plus Bevacizumab for Metastatic Colorectal Cancer (FIRE-3): A Post-hoc Analysis of
Tumour Dynamics in the Final RAS Wild-type Subgroup of this Randomised Open-label Phase 3 Trial. Lancet Oncol 2016;17:1426-34.
[68] Folprecht G, Gruenberger T, Bechstein W, Raab HR, Weitz J, Lordick F, et al. Survival of Patients with Initially Unresectable Colorectal Liver Metastases Treated with FOLFOX/cetuximab or FOLFIRI/cetuximab in a Multidisciplinary Concept (CELIM Study). Ann Oncol 2014;25:1018-25.
[69] Garufi C, Torsello A, Tumolo S, Ettorre GM, Zeuli M, Campanella C, et al. Cetuximab Plus Chronomodulated Irinotecan, 5-Fluorouracil, Leucovorin and Oxaliplatin as Neoadjuvant Chemotherapy in Colorectal Liver Metastases: POCHER Trial. Br J Cancer 2010;103:1542-7.
[70] Ohori H, Yamaguchi T, Matsuura M, Nishioka A, Makiyama A, Noura S, et al. The RANDOMIZED Phase II Study of FOLFOXIRI Plus Cetuximab versus FOLFOXIRI plus Bevacizumabas the First-Line Treatment in Metastatic Colorectal Cancer with RAS Wild-Type Tumors: The Deeper Trial (JACRRO CC-13). ASCO Annual Meeting; 2021.
[71] Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Final Results from PRIME: Randomized Phase III Study of Panitumumab with FOLFOX4 for Firstline Treatment of Metastatic Colorectal Cancer. Ann Oncol 2014;25:1346-55.
[72] Rivera F, Karthaus M, Hecht JR, Sevilla I, Forget F, Fasola G, et al. Final Analysis of the Randomised PEAK Trial: Overall Survival and Tumour Responses during Firstline Treatment with mFOLFOX6 Plus Either Panitumumab or Bevacizumab in Patients with Metastatic Colorectal Carcinoma. Int J Colorectal Dis 2017;32:1179-90.
[73] Kurreck A, Geissler M, Martens UM, RieraKnorrenschild J, Greeve J, Florschütz A, et al. Dynamics in Treatment Response and Disease Progression of Metastatic Colorectal Cancer (mCRC) Patients with Focus
on BRAF Status and Primary Tumor Location: Analysis of Untreated RAS-wild-type mCRC Patients Receiving FOLFOXIRI either with or without Panitumumab in the VOLFI Trial (AIO KRK0109). J Cancer Res Clin Oncol 2020;146:2681-91.
[74] Hurwitz HI, Tebbutt NC, Kabbinavar F, Giantonio BJ, Guan ZZ, Mitchell L, et al. Efficacy and Safety of Bevacizumab in Metastatic Colorectal Cancer: Pooled Analysis from Seven Randomized Controlled Trials. Oncologist 2013;18:1004-12.
[75] Cassidy J, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. XELOX vs FOLFOX-4 as Firstline Therapy for Metastatic Colorectal Cancer: NO16966 Updated Results. Br J Cancer 2011;105:58-64.
[76] Cunningham D, Lang I, Marcuello E, Lorusso V, Ocvirk J, Shin DB, et al. Bevacizumab Plus Capecitabine Versus Capecitabine Alone in Elderly Patients with Previously Untreated Metastatic Colorectal Cancer (AVEX): An Open-label, Randomised Phase 3 Trial. Lancet Oncol 2013;14:1077-85.
[77] Welch S, Spithoff K, Rumble RB, Maroun J; Gastrointestinal Cancer Disease Site Group. Bevacizumab Combined with Chemotherapy for Patients with Advanced Colorectal Cancer: A Systematic Review. Ann Oncol 2010;21:1152-62. 
[78] Luo HY, Xu RH. Predictive and Prognostic Biomarkers with Therapeutic Targets in Advanced Colorectal Cancer. World J Gastroenterol 2014;20:3858-74.
[79] Pathak S, Sushmitha S, Banerjee A, Marotta F, Gopinath M, Murugesan R, et al. Review on Comparative Efficacy of Bevacizumab, Panitumumab and Cetuximab Antibody Therapy with Combination of FOLFOX-4 in KRAS-mutated Colorectal Cancer Patients. Oncotarget 2017;9:7739-48.
[80] Grothey A, Sugrue MM, Purdie DM, Dong W, Sargent D, Hedrick E, et al. Bevacizumab beyond First Progression is Associated with Prolonged Overall Survival in Metastatic Colorectal Cancer: Results from a Large Observational Cohort Study (BRiTE). J Clin Oncol 2008;26:5326-34.
[81] Díaz-Rubio E, Gómez-España A, Massutí B, Sastre J, Abad A, Valladares M, et al. First-line XELOX Plus Bevacizumab Followed by XELOX Plus Bevacizumab or Single-agent Bevacizumab as Maintenance Therapy in Patients with Metastatic Colorectal Cancer: The Phase III MACRO TTD Study. Oncologist 2012;17:15-25.
[82] Simkens LH, van Tinteren H, May A, ten Tije AJ, Creemers GJ, Loosveld OJ, et al. Maintenance Treatment with Capecitabine and Bevacizumab in Metastatic Colorectal Cancer (CAIRO3): A Phase 3 Randomised
Controlled Trial of the Dutch Colorectal Cancer Group. Lancet 2015;385:1843-52.
[83] Bennouna J, Sastre J, Arnold D, Österlund P, Greil R, Van Cutsem E, et al. Continuation of Bevacizumab after First Progression in Metastatic Colorectal Cancer (ML18147): A Randomised Phase 3 Trial. Lancet Oncol 2013;14:29-37.
[84] Masi G, Salvatore L, Boni L, Loupakis F, Cremolini C, Fornaro L, et al. Continuation or Reintroduction of Bevacizumab beyond Progression to First-line Therapy in Metastatic Colorectal Cancer: Final Results of the Randomized BEBYP Trial. Ann Oncol 2015;26:724-30.
[85] Tabernero J, Van Cutsem E, Lakomý R, Prausová J, Ruff P, van Hazel GA, et al. Aflibercept Versus Placebo in Combination with Fluorouracil, Leucovorin and Irinotecan in the Treatment of Previously Treated Metastatic Colorectal Cancer: Prespecified Subgroup Analyses from the VELOUR Trial. Eur J Cancer 2014;50:320-31.
[86] Tabernero J, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R, et al. Ramucirumab Versus Placebo in Combination with Second-line FOLFIRI in Patients with Metastatic Colorectal Carcinoma that Progressed during or after First-line Therapy with Bevacizumab, Oxaliplatin, and a Fluoropyrimidine (RAISE): A Randomised, Double-blind, Multicentre, Phase 3 Study. Lancet Oncol 2015;16:499-508.
[87] Cremolini C, Schirripa M, Antoniotti C, Moretto R, Salvatore L, Masi G, et al. First-line Chemotherapy for mCRC a Review and Evidence-based Algorithm. Nat Rev Clin Oncol 2015;12:607-19.
[88] Missiaglia E, Jacobs B, D’Ario G, Di Narzo AF, Soneson C, Budinska E, et al. Distal and Proximal Colon Cancers Differ in Terms of Molecular, Pathological, and Clinical Features. Ann Oncol 2014;25:1995-2001.
[89] Loupakis F, Yang D, Yau L, Feng S, Cremolini C, Zhang W, et al. Primary Tumor Location as a Prognostic Factor in Metastatic Colorectal Cancer. J Natl Cancer Inst 2015;107:dju427.
[90] Arnold D, Lueza B, Douillard JY, Peeters M, Lenz HJ, Venook A, et al. Prognostic and Predictive Value of Primary Tumour Side in Patients with RAS Wild-Type Metastatic Colorectal Cancer Treated with Chemotherapy and EGFR Directed Antibodies in Six Randomized Trials. Ann Oncol 2017;28:1713-29.
[91] Modest DP, Stintzing S, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, et al. Exploring the Effect of Primary Tumor Sidedness on Therapeutic Efficacy Across Treatment Lines in Patients with Metastatic Colorectal Cancer: Analysis of FIRE-3 (AIOKRK0306). Oncotarget 2017;8:105749-60.
[92] Rosen LS, Jacobs IA, Burkes RL. Bevacizumab in Colorectal Cancer: Current Role in Treatment and the Potential of Biosimilars. Target Oncol 2017;12:599-610. 
[93] Elez E, Argilés G, Tabernero J. First-Line Treatment of Metastatic Colorectal Cancer: Interpreting FIRE-3, PEAK, and CALGB/SWOG 80405. Curr Treat Options Oncol 2015;16:52.
[94] Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in Tumors with MismatchRepair Deficiency. N Engl J Med 2015;372:2509-20.
[95] O’Neil BH, Wallmark JM, Lorente D, Elez E, Raimbourg J, Gomez-Roca C, et al. Safety and Antitumor Activity of the Anti-PD-1 Antibody Pembrolizumab in Patients with Advanced Colorectal Carcinoma. PLoS One 2017;12:e0189848.
[96] Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science 2017;357:409-13.
[97] Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H, et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J Clin Oncol 2020;38:11-9.
[98] Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and Activity of Anti-PD-L1 Antibody in Patients with Advanced Cancer. N Engl J Med 2012;366:2455-65.
[99] Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in Patients with Metastatic DNA Mismatch Repair-deficient or Microsatellite Instability-high Colorectal Cancer (CheckMate 142): An Open-label, Multicentre, Phase 2 Study. Lancet Oncol 2017;18:1182-91.
[100] Overman MJ, Lonardi S, Wong KY, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable Clinical Benefit with Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/ Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol 2018;36:773-9.
[101] Lenz HJ, Lonardi S, Zagonel V, Van Cutsem E, Limon ML, Wong KY, et al. Nivolumab Plus Low-dose Ipilimumab as First-line Therapy in Microsatellite Instability-high/DNA Mismatch Repair Deficient Metastatic Colorectal Cancer: Clinical Update. J Clin Oncol 2021;38:JCO2101015.
[102] André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in Microsatellite-InstabilityHigh Advanced Colorectal Cancer. N Engl J Med 2020;383:2207-18.
[103] Andre T, Shiu K, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Final Overall Survival for the Phase 3 KN177 Study: Pembrolizumab Versus Chemotherapy in Microsatellite Instaability-High/Mismatch Repair Deficient (MSI-H/dMMR) Metastatic Colorectal Cancer (mCRC). J Clin Oncol 2021;39 Suppl 15:3500.
[104] Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, et al. A Molecularly Annotated Platform of Patientderived Xenografts (“Xenopatients”) Identifies HER2 as an Effective Therapeutic Target in Cetuximab-resistant Colorectal Cancer. Cancer Discov 2011;1:508-23.
[105] Heppner BI, Behrens HM, Balschun K, Haag J, Krüger S, Becker T, et al. HER2/neu Testing in Primary Colorectal Carcinoma. Br J Cancer 2014;111:1977-84.
[106] Richman SD, Southward K, Chambers P, Cross D, Barrett J, Hemmings G, et al. HER2 Overexpression and Amplification as a Potential Therapeutic Target in Colorectal Cancer: Analysis of 3256 Patients Enrolled in the QUASAR, FOCUS and PICCOLO Colorectal Cancer Trials. J Pathol 2016;238:562-70.
[107] Sawada K, Nakamura Y, Yamanaka T, Kuboki Y, Yamaguchi D, Yuki S, et al. Prognostic and Predictive Value of HER2 Amplification in Patients with Metastatic Colorectal Cancer. Clin Colorectal Cancer
2018;17:198-205.
[108] Cancer Genome Atlas Network. Comprehensive Molecular Characterization of Human Colon and Rectal Cancer. Nature 2012;487:330-7.
[109] Seo AN, Kwak Y, Kim DW, Kang SB, Choe G, Kim WH, et al. HER2 Status in Colorectal Cancer: Its Clinical Significance and the Relationship between HER2 Gene Amplification and Expression. PLoS One 2014;9:e98528.
[110] Yeh YM, Lee CH, Chen SH, Lee CT, Chen YL, Lin BW, et al. Comprehensive Assessment of HER2 Alteration in a Colorectal Cancer Cohort: From Next-generation Sequencing to Clinical Significance. Cancer Manag Res 2019;11:7867-75.
[111] Bosman FT, Delorenzi M, Tejpar S. Distal and Proximal Colon Cancers Differ in Terms of Molecular, Pathological, and Clinical Features. Ann Oncol 2014;25:1995-2001.
[112] De Cuyper A, Van Den Eynde M, Machiels JP. HER2 as a Predictive Biomarker and Treatment Target in Colorectal Cancer. Clin Colorectal Cancer 2020;19:65-72.
[113] Greally M, Kelly CM, Cercek A. HER2: An Emerging Target in Colorectal Cancer. Curr Probl Cancer 2018;42:560-71.
[114] Sergina NV, Moasser MM. The HER Family and Cancer: Emerging Molecular Mechanisms and Therapeutic Targets. Trends Mol Med 2007;13:527-34.
[115] Moasser MM. The Oncogene HER2: It Signaling and Transforming Functions and its Role in Human Cancer Pathogenesis. Oncogene 2007;26:6469-87.
[116] Jeong JH, Kim J, Hong YS, Kim D, Kim JE, Kim SY, et al. HER2 Amplification and Cetuximab Efficacy in Patients with Metastatic Colorectal Cancer Harboring Wild-type RAS and BRAF. Clin Colorectal Cancer
2017;16:e147-52.
[117] Martin V, Landi L, Molinari F, Fountzilas G, Geva R, Riva A, et al. HER2 Gene Copy Number Status may Influence Clinical Efficacy to Anti-EGFR Monoclonal Antibodies in Metastatic Colorectal Cancer Patients. Br J Cancer 2013;108:668-75.
[118] Sartore-Bianchi A, Trusolino L, Martino C, Bencardino K, Lonardi S, Bergamo F, et al. Dual-targeted Therapy with Trastuzumab and Lapatinib in Treatment-refractory, KRAS Codon 12/13 Wild-type, HER2-positive Metastatic Colorectal Cancer (HERACLES): A Proof-of-concept, Multicentre, Open-label, Phase 2 Trial. Lancet Oncol 2016;17:738-46.
[119] Sartore-Bianchi A, Lonardi S, Martino C, Fenocchio E, Tosi F, Ghezzi S, et al. Pertuzumab and Trastuzumab Emtansine in Patients with HER2-amplified Metastatic Colorectal Cancer: The Phase II HERACLES-B Trial. ESMO Open 2020;5:e000911.
[120] Meric-Bernstam F, Hurwitz H, Raghav KP, McWilliams RR, Fakih M, VanderWalde A, et al. Pertuzumab Plus Trastuzumab for HER2-amplified Metastatic Colorectal Cancer (MyPathway): An Updated
Report from a Multicentre, Open-label, Phase 2a, Multiple Basket Study. Lancet Oncol 2019;20:518-30.
[121] Yoshino T. Trastuzumab Deruxtecan (T-DXd; DS-8201) in Patients with HER2-expressing Metastatic Colorectal Cancer: Final Results from a Phase 2, Multicenter, Openlabel Study (DESTINY-CRC01). National Cancer Center Hospital East, Kashiwa, Japan June, 2021. ASCO Annual Meeting; 2021.
[122] Siena S, Sartore-Bianchi A, Marsoni S, Hurwitz HI, McCall SJ, Penault-Llorca F, et al. Targeting the Human Epidermal Growth Factor Receptor 2 (HER2) Oncogene in Colorectal Cancer. Ann Oncol 2018;29:1108-19.
[123] Samuels Y, Diaz LA Jr., Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, et al. Mutant PIK3CA Promotes Cell Growth and Invasion of Human Cancer Cells. Cancer Cell 2005;7:561-73.
[124] Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR Signalling Controls Tumour Cell Growth. Nature 2006;441:424-30.
[125] Ogino S, Lochhead P, Giovannucci E, Meyerhardt JA, Fuchs CS, Chan AT. Discovery of Colorectal Cancer PIK3CA Mutation as Potential Predictive Biomarker: Power and Promise of Molecular Pathological Epidemiology. Oncogene 2014;33:2949-55.
[126] Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, et al. Aspirin Use, Tumor PIK3CA Mutation, and Colorectal-cancer Survival. N Engl J Med 2012;367:1596-606.
[127] Zhu K, Yan H, Wang R, Zhu H, Meng X, Xu X, et al. Mutations of KRAS and PIK3CA as Independent Predictors of Distant Metastases in Colorectal Cancer. Med Oncol 2014;31:16.
[128] He Y, Van’t Veer LJ, Mikolajewska-Hanclich I, van Velthuysen ML, Zeestraten EC, Nagtegaal ID, et al. PIK3CA Mutations Predict Local Recurrences in Rectal Cancer Patients. Clin Cancer Res 2009;15:6956-62.
[129] Liao X, Morikawa T, Lochhead P, Imamura Y, Kuchiba A, Yamauchi M, et al. Prognostic Role of PIK3CA Mutation in Colorectal Cancer: Cohort Study and Literature Review. Clin Cancer Res 2012;18:2257-68.
[130] Yamauchi M, Morikawa T, Kuchiba A, Imamura Y, Qian ZR, Nishihara R, et al. Assessment of Colorectal Cancer Molecular Features along Bowel Subsites Challenges the Conception of Distinct Dichotomy of
Proximal Versus Distal Colorectum. Gut 2012;61:847-54.
[131] Jin J, Shi Y, Zhang S, Yang S. PIK3CA Mutation and Clinicopathological Features of Colorectal Cancer: A Systematic Review and Meta-Analysis. Acta Oncol 2020;59:66-74.
[132] Mao C, Yang ZY, Hu XF, Chen Q, Tang JL. PIK3CA Exon 20 Mutations as a Potential Biomarker for Resistance to Anti-EGFR Monoclonal Antibodies in KRAS Wildtype Metastatic Colorectal Cancer: A Systematic Review and Meta-analysis. Ann Oncol 2012;23:1518-25.
[133] De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA Mutations on the Efficacy of Cetuximab Plus Chemotherapy in Chemotherapyrefractory Metastatic Colorectal Cancer: A Retrospective Consortium Analysis. Lancet Oncol 2010;11:753-62.
[134] Yan J, Yang S, Tian H, Zhang Y, Zhao H. Copanlisib Promotes Growth Inhibition and Apoptosis by Modulating the AKT/FoxO3a/PUMA Axis in Colorectal Cancer. Cell Death Dis 2020;11:943.
[135] Doi T, Fuse N, Yoshino T, Kojima T, Bando H, Miyamoto H, et al. A Phase I Study of Intravenous PI3K Inhibitor Copanlisib in Japanese Patients with Advanced or Refractory Solid Tumors. Cancer Chemother Pharmacol 2017;79:89-98.
[136] Haddadi N, Lin Y, Travis G, Simpson AM, Nassif NT, McGowan EM. PTEN/PTENP1: “Regulating the Regulator of RTK-dependent PI3K/Akt Signalling”, New Targets for Cancer Therapy. Mol Cancer 2018;17:37.
[137] Furnari FB, Huang HJ, Cavenee WK. The Phosphoinositol Phosphatase Activity of PTEN Mediates a Serumsensitive G1 Growth Arrest in Glioma Cells. Cancer Res 1998;58:5002-8.
[138] Rosen L, Goldman J, Hubbard JM, Roos M, Capdevila J, Maynes J, et al. 382 Phase Ib Study of Oral Dual-PI3K/ mTOR Inhibitor GDC-0980 in Combination with Capecitabine and mFOLFOX6 + Bevacizumab in Patients with Advanced Solid Tumors and Colorectal Cancer. Eur J Cancer 2014;50:122-3.
[139] McRee AJ, Sanoff HK, Carlson C, Ivanova A, O’Neil BH. APhase I Trial of mFOLFOX6 Combined with the Oral PI3K Inhibitor BKM120 in Patients with Advanced Refractory Solid Tumors. Invest New Drugs 2015;33:1225-31.
[140] Coleman N, Naing A, Zhang S, Piha-Paul SA, Tsimberidou AM, Janku F, et al. Phase I Study of mTORC1/2 Inhibitor Sapanisertib (TAK-228) in Combination with Metformin in Patients (PTS) with mTOR/AKT/PI3K Pathway Alterations and Advanced Solid Malignancies. ASCO Annual Meeting; 2021.
[141] Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in Cancer: Mechanisms and Advances in Clinical Trials. Mol Cancer 2019;18:26.
[142] Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E. The Lipid Phosphatase Activity of PTEN is Critical for Stabilizing Intercellular Junctions and Reverting Invasiveness. J Cell Biol 2001;155:1129-35.
[143] Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, et al. Phosphorylation of Inositol 1,4,5-Trisphosphate Receptors by Protein Kinase B/Akt Inhibits Ca2+ Release and Apoptosis. Proc Natl Acad Sci U S A 2008;105:2427-32.
[144] Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A. Biomarkers Predicting Clinical Outcome of Epidermal Growth Factor Receptor-targeted Therapy in Metastatic Colorectal Cancer. J Natl Cancer Inst 2009;101:1308-24.
[145] Laurent-Puig P, Cayre A, Manceau G, Buc E, Bachet JB, Lecomte T, et al. Analysis of PTEN, BRAF, and EGFR Status in Determining Benefit from Cetuximab Therapy in Wild-type KRAS Metastatic Colon Cancer. J Clin Oncol 2009;27:5924-30.
[146] Salvatore L, Calegari MA, Loupakis F, Fassan M, Di Stefano B, Bensi M, et al. PTEN in Colorectal Cancer: Shedding Light on Its Role as Predictor and Target. Cancers (Basel) 2019;11:1765.
[147] Yang X, Niu B, Wang L, Chen M, Kang X, Wang L, et al. Autophagy Inhibition Enhances Colorectal Cancer Apoptosis Induced by Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235. Oncol Lett 2016;12:102-6.
[148] Kotelevets L, Scott MGH, Chastre E. Targeting PTEN in Colorectal Cancers. Adv Exp Med Biol 2018;1110:55-73.
[149] Abou Najem S, Khawaja G, Hodroj MH, Rizk S. Synergistic Effect of Epigenetic Inhibitors Decitabine and Suberoylanilide Hydroxamic Acid on Colorectal Cancer In Vitro. Curr Mol Pharmacol 2019;12:281-300.
[150] Jansen YJ, Verset G, Schats K, Van Dam PJ, Seremet T, Kockx M, et al. Phase I Clinical Trial of Decitabine (5-aza2’-deoxycytidine) Administered by Hepatic Arterial Infusion in Patients with Unresectable Liver-predominant Metastases. ESMO Open 2019;4:e000464.
[151] Garrido-Laguna I, McGregor KA, Wade M, Weis J, Gilcrease W, Burr L, et al. A Phase I/II Study of Decitabine in Combination with Panitumumab in Patients with Wildtype (wt) KRAS Metastatic Colorectal Cancer. Invest New Drugs 2013;31:1257-64.
[152] Xue Q, Sun K, Deng HJ, Lei ST, Dong JQ, Li GX. AntimiRNA-221 Sensitizes Human Colorectal Carcinoma Cells to Radiation by Upregulating PTEN. World J Gastroenterol 2013;19:9307-17.
[153] Hopkins BD, Fine B, Steinbach N, Dendy M, Rapp Z, Shaw J, et al. A Secreted PTEN Phosphatase that Enters Cells to Alter Signaling and Survival. Science 2013;341:399-402.
[154] Dillon LM, Miller TW. Therapeutic Targeting of Cancers with Loss of PTEN Function. Curr Drug Targets 2014;15:65-79.
[155] Wang Q, Feng Y, Peng W, Ji D, Zhang Z, Qian W, et al. Long Noncoding RNA Linc02023 Regulates PTEN Stability and Suppresses Tumorigenesis of Colorectal Cancer in a PTEN-dependent Pathway. Cancer Lett 2019;451:68-78.
[156] Wang Q, Yang S, Wang K, Sun SY. MET Inhibitors for Targeted Therapy of EGFR TKI-resistant Lung Cancer. J Hematol Oncol 2019;12:63.
[157] Matsumoto K, Umitsu M, De Silva DM, Roy A, Bottaro DP. Hepatocyte Growth Factor/MET in Cancer Progression and Biomarker Discovery. Cancer Sci 2017;108:296-307.
[158] Gao H, Guan M, Sun Z, Bai C. High c-Met Expression is a Negative Prognostic Marker for Colorectal Cancer: A Meta-analysis. Tumour Biol 2015;36:515-20.
[159] Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, et al. MACC1, a Newly Identified Key Regulator of HGFMET Signaling, Predicts Colon Cancer Metastasis. Nat Med 2009;15:59-67.
[160] Mo HN, Liu P. Targeting MET in Cancer Therapy. Chronic Dis Transl Med 2017;3:148-53.
[161] Bigatto V, De Bacco F, Casanova E, Reato G, Lanzetti L, Isella C, et al. TNF-α Promotes Invasive Growth through the MET Signaling Pathway. Mol Oncol 2015;9:377-88.
[162] Ye M, Hu D, Tu L, Zhou X, Lu F, Wen B, et al. Involvement of PI3K/Akt Signaling Pathway in Hepatocyte Growth Factor-induced Migration of Uveal Melanoma Cells. Invest Ophthalmol Vis Sci 2008;49:497-504.
[163] Ide T, Kitajima Y, Miyoshi A, Ohtsuka T, Mitsuno M, Ohtaka K, et al. The Hypoxic Environment in Tumorstromal Cells Accelerates Pancreatic Cancer Progression Via the Activation of Paracrine Hepatocyte Growth Factor/c-Met Signaling. Ann Surg Oncol 2007;14:2600-7.
[164] Van Cutsem E, Eng C, Nowara E, Swieboda-Sadlej A, Tebbutt NC, Mitchell E, et al. Randomized Phase Ib/II Trial of Rilotumumab or Ganitumab with Panitumumab Versus Panitumumab Alone in Patients with Wildtype KRAS Metastatic Colorectal Cancer. Clin Cancer Res 2014;20:4240-50.
[165] Bendell JC, Hochster H, Hart LL, Firdaus I, Mace JR, McFarlane JJ, et al. A Phase II Randomized Trial (GO27827) of First-Line FOLFOX Plus Bevacizumab with or without the MET Inhibitor Onartuzumab in Patients with Metastatic Colorectal Cancer. Oncologist 2017;22:264-71.
[166] Eng C, Bessudo A, Hart LL, Severtsev A, Gladkov O, Müller L, et al. A Randomized, Placebo-controlled, Phase 1/2 Study of Tivantinib (ARQ 197) in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with Wild-type KRAS who have Received First-line Systemic Therapy. Int J Cancer 2016;139:177-86.
[167] Rimassa L, Bozzarelli S, Pietrantonio F, Cordio S, Lonardi S, Toppo L, et al. Phase II Study of Tivantinib and Cetuximab in Patients with KRAS Wild-type Metastatic Colorectal Cancer with Acquired Resistance to EGFR Inhibitors and Emergence of MET Overexpression: Lesson Learned for Future Trials With EGFR/MET Dual Inhibition. Clin Colorectal Cancer 2019;18:125-32.e2.

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing