AccScience Publishing / JCTR / Volume 7 / Issue 5 / DOI: 10.18053/jctres.07.202105.007
REVIEW ARTICLE

Evidence for a connection between coronavirus disease-19 and exposure to radiofrequency radiation from wireless communications including 5G

Beverly Rubik1,2* Robert R. Brown3
Show Less
1 Department of Mind-Body Medicine, College of Integrative Medicine and Health Sciences, Saybrook University, Pasadena CA, USA
2 Institute for Frontier Science, Oakland, CA, USA
3 Department of Radiology, Hamot Hospital, University of Pittsburgh Medical Center, Erie, PA; Radiology Partners, Phoenix, AZ, USA
Submitted: 10 March 2021 | Revised: 11 June 2021 | Accepted: 25 August 2021 | Published: 29 September 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background and aim: COVID-19 public health policy has focused on the SARS-CoV-2 virus and its effects on human health while environmental factors have been largely ignored. In considering the epidemiological triad (agent-host-environment) applicable to all disease, we investigated a possible environmental factor in the COVID-19 pandemic: ambient radiofrequency radiation from wireless communication systems including microwaves and millimeter waves. SARS-CoV-2, the virus that caused the COVID-19 pandemic, surfaced in Wuhan, China shortly after the implementation of city-wide 5G (fifth generation of wireless communications radiation), and rapidly spread globally, initially demonstrating a statistical correlation to international communities with recently established 5G networks. In this study, we examined the peer-reviewed scientific literature on the detrimental bioeffects of wireless communications radiation (WCR) and identified several mechanisms by which WCR may have contributed to the COVID-19 pandemic as a toxic environmental cofactor. By crossing boundaries between the disciplines of biophysics and pathophysiology, we present evidence that WCR may: (1) cause morphologic changes in erythrocytes including echinocyte and rouleaux formation that can contribute to hypercoagulation; (2) impair microcirculation and reduce erythrocyte and hemoglobin levels exacerbating hypoxia; (3) amplify immune system dysfunction, including immunosuppression, autoimmunity, and hyperinflammation; (4) increase cellular oxidative stress and the production of free radicals resulting in vascular injury and organ damage; (5) increase intracellular Ca2+ essential for viral entry, replication, and release, in addition to promoting pro-inflammatory pathways; and (6) worsen heart arrhythmias and cardiac disorders.

Relevance for patients: In short, WCR has become a ubiquitous environmental stressor that we propose may have contributed to adverse health outcomes of patients infected with SARS-CoV-2 and increased the severity of the COVID-19 pandemic. Therefore, we recommend that all people, particularly those suffering from SARS-CoV-2 infection, reduce their exposure to WCR as much as reasonably achievable until further research better clarifies the systemic health effects associated with chronic WCR exposure.

Conflict of interest
Conflict of Interest The authors declare that they have no conflicts of interest in preparing and publishing this manuscript. No competing financial interests exist.
References

[1] Centers for Disease Control and Prevention. Epidemiological Triad. Atlanta, Georgia: Centers for Disease Control and Prevention; 2020.

[2] Balmori A. Electromagnetic Pollution from Phone Masts. Effects on Wildlife. Pathophysiology 2009;16:191-9.

[3] Lin JC. 5G Communications Technology and Coronavirus Disease. IEEE Microw Mag 2020;21:16-9.

[4] Mordachev VI. Correlation between the Potential Electromagnetic Pollution Level and the Danger of COVID-19. 4G/5G/6G can be Safe for People. Doklady BGUIR 2020;18:96-112.

[5] Tsiang A, Havas M. COVID-19 Attributed Cases and Deaths are Statistically Higher in States and Counties with 5th Generation Millimeter Wave Wireless Telecommunications in the United States. Med Res Arch 2021;9:2371.

[6] Ing AJ, Cocks C, Green JP. COVID-19: In the Footsteps of Ernest Shackleton. Thorax 2020;75:693-4.

[7] Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep 69:458-64.

[8] Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease. JAMA Intern Med 2020;180:934-43.

[9] Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 Pneumonia: Different Respiratory Treatments for Different Phenotypes: Intensive Care Med 2020;46:1099-102.

[10] Cecchini R, Cecchini AL. SARS-CoV-2 Infection Pathogenesis is Related to Oxidative Stress as a Response to Aggression. Med Hypotheses 2020;143:110102.

[11] Cavezzi A, Troiani E, Corrao S. COVID-19: Hemoglobin, Iron, and Hypoxia Beyond Inflammation, a Narrative Review. Clin Pract 2020;10:1271.

[12] Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, Nigoghossian C, et al. Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. JACC 2020;75:2950-73.

[13] Carfi A, Bernabei R, Landi F. Persistent Symptoms in Patients after Acute COVID-19. JAMA 2020;324:603-5.

[14] ICNIRP. International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys 2020;118:483-524.

[15] Bortkiewicz A, Gadzicka E, Szymczak W. Mobile Phone Use and Risk for Intracranial Tumors and Salivary Gland Tumors A Meta-analysis. Int J Occup Med Environ Health 2017;30:27-43.

[16] Sangün Ö, Dündar B, Çömlekçi S, Büyükgebiz A. The Effects of Electromagnetic Field on the Endocrine System in Children and Adolescents. Pediatr Endocrinol Rev 2016;13:531-45.

[17] Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative Mechanisms of Biological Activity of Low-intensity Radiofrequency Radiation. Electromagn Biol Med 2016;35:186-202.

[18] Ruediger HW. Genotoxic Effects of Radiofrequency Electromagnetic Fields. Pathophysiology 2009;16:89-102.

[19] Asghari A, Khaki AA, Rajabzadeh A, Khaki A. A Review on Electromagnetic Fields (EMFs) and the Reproductive System. Electron Physician 2016;8:2655-62.

[20] Zhang J, Sumich A, Wang GY. Acute Effects of Radiofrequency Electromagnetic Field Emitted by Mobile Phone on Brain Function. Bioelectromagnetics 2017;38:329-38.

[21] Pall ML. Microwave Frequency Electromagnetic Fields (EMFs) Produce Widespread Neuropsychiatric Effects Including Depression. J Chem Neuroanat 2016;75:43-51.

[22] Avendano C, Mata A, Sanchez Sarmiento CA, Doncei GF. Use of Laptop Computers Connected to Internet through Wi-Fi Decreases Human Sperm Motility and Increases Sperm DNA Fragmentation. Fertil Steril 2012;97:39-45.

[23] Buchner K, Eger H. Changes of Clinically Important Neurotransmitters under the Influence of Modulated RF Fields a Long-term Study Under Real-life Conditions Umwelt Medizin Gesellschaft 2011;24:44-57.

[24] Navarro EA, Segura J, Portoles M, Gomez-Perretta C. The Microwave Syndrome: A Preliminary Study in Spain. Electromagn Biol Med 2003;22:161-9.

[25] Hutter HP, Moshammer H, Wallner P, Kundi M. Subjective Symptoms, Sleeping Problems, and Cognitive Performance in Subjects Living Near Mobile Phone Base Stations. Occup Environ Med 2006;63:307-13.

[26] Magras IN, Xenos TD. RF Radiation-induced Changes in the Prenatal Development of Mice. Bioelectromagnetics 1997;18:455-61.

[27] Glaser ZR. Bibliography of Reported Biological Phenomena (‘Effects’) and Clinical Manifestations Attributed to Microwave and Radio-Frequency Radiation, Research Report. Project MF12.524.015-00043, Report No. 2. Bethesda, MD: Naval Medical Research Institute; 1972. p. 1-103.

[28] Glaser ZR, Brown PF, Brown MS. Bibliography of Reported Biological Phenomena (Effects) and Clinical Manifestations Attributed to Microwave and RadioFrequency Radiation: Compilation and Integration of Report and Seven Supplements. Bethesda, MD: Naval Medical Research Institute; 1976. p. 1-178.

[29] Belyaev IY, Shcheglov VS, Alipov YD, Polunin VA. Resonance Effect of Millimeter Waves in the Power Range from 10(-19) to 3 x 10(-3) W/cm2 on Escherichia coli Cells at Different Concentrations. Bioelectromagnetics 1996;17:312-21.

[30] Grigoriev YG, Grigoriev OA, Ivanov AA, Lyaginskaya AM, Merkulov AV, Shagina NB, et al. Confirmation Studies of Soviet Research on Immunological Effects of Microwaves: Russian Immunology Results. Bioelectromagnetics 2010;31:589-602.

[31] Grigoriev Y. Mobile Communications and Health of Population: The Risk Assessment, Social and Ethical Problems. Environmentalist 2012;32:193-200.

[32] Repacholi M, Grigoriev Y, Buschmann J, Pioli C. Scientific Basis for the Soviet and Russian Radiofrequency Standards for the General Public. Bioelectromagnetics 2012;33:623-33.

[33] Pakhomov A, Murphy M. A Comprehensive Review of the Research on Biological Effects of Pulsed Radiofrequency Radiation in Russia and the Former Soviet Union; 2011.

[34] Belyaev IY. Dependence of Non-thermal Biological Effects of Microwaves on Physical and Biological Variables: Implications for Reproducibility and Safety Standards. Eur J Oncol 2010;5:187-218.

[35] Franzen J. Wideband Pulse Propagation in Linear Dispersive Bio-Dielectrics Using Fourier Transforms. United States Air Force Research Laboratory, Report No. AFRL-HE-BR-TR-1999-0149, February; 1999.

[36] Albanese R, Penn J, Medina R. Short-rise-time Microwave Pulse Propagation through Dispersive Biological Media. J Opt Soc Am A 1989;6:1441-6.

[37] Lin-Liu S, Adey WR. Low Frequency Amplitude Modulated Microwave Fields Change Calcium Efflux Rates from Synaptosomes. Bioelectromagnetics 1982;3:309-22.

[38] Penafiel LM, Litovitz T, Krause D, Desta A, Mullins MJ. Role of Modulation on the Effect of Microwaves on Ornithine Decarboxylase Activity in L929 Cells. Bioelectromagnetics 1997;18:132-41.

[39] Huber R, Treyer V, Borbely AA, Schuderer J, Gottselig JM, Landolt HP, Werth E, et al. Electromagnetic Fields, Such as Those from Mobile Phones, Alter Regional Cerebral Blood Flow and Sleep and Waking EEG. J Sleep Res 2002;11:289-95.

[40] Panagopoulos DJ, Karabarbounis A, Margaritis LH. Mechanism of Action of Electromagnetic Fields on Cells. Biochem Biophys Res Commun 2002;298:95-102.

[41] Panagopoulos DJ. Comments on Pall’s Millimeter (MM) Wave and Microwave Frequency Radiation Produce Deeply Penetrating Effects: The Biology and the Physics. Rev Environ Health 2021;2021:165.

[42] Sage C, Carpenter DO. BioInitiative Working Group, BioInitiative Report: A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Radiation. Updated 2014-2020; 2012. http://www.bioinitiative.org

[43] Belpomme D, Hardell L, Belyaev I, Burgio E, Carpenter DO. Thermal and Non-thermal Health Effects of Low Intensity Non-ionizing Radiation: An International Perspective (Review). Environ Pollut 2018;242:643-58.

[44] Di Ciaula A. Towards 5G Communication Systems: Are there Health Implications? Int J Hyg Environ Health 2018;221:367-75.

[45] Russell CL. 5G Wireless Telecommunications Expansion: Public Health and Environmental Implications. Environ Res 2018;165:484-95.

[46] Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M, et al. Risks to Health and Well-being from Radio-frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Public Health Front 2019;7:223.

[47] Pakhomov AG, Akyel Y, Pakhomova ON, Stuck BE, Murphy MR. Current State and Implications of Research on the Biological Effects of Millimeter Waves. Bioelectromagnetics 1998;19:393-413.

[48] Betskii OV, Lebedeva NN. Low-intensity Millimeter Waves in Biology and Medicine. In: Clinical Application of Bioelectromagnetic Medicine. New York: Marcel Decker; 2004. p. 30-61.

[49] Kostoff RN, Block JA, Solka JL, Briggs MB, Rushenberg RL, Stump JA, et al. Literature-Related Discovery: A Review. Report to the Office of Naval Research; 2007. p. 1-58.

[50] Havas M. Radiation from Wireless Technology Affects the Blood, Heart, and the Autonomic Nervous System. Rev Environ Health 2013;28:75-84.

[51] Rubik B. Does Short-term Exposure to Cell Phone Radiation Affect the Blood? Wise Trad Food Farm Heal Arts 2014;15:19-28.

[52] Wagner C, Steffen P, Svetina S. Aggregation of Red Blood Cells: From Rouleaux to Clot Formation. Comput Rendus Phys 2013;14:459-69.

[53] Lakhdari N, Tabet B, Boudraham L, Laoussati M, Aissanou S, Beddou L, et al. Red Blood Cells Injuries and Hypersegmented Neutrophils in COVID-19 Peripheral. medRxiv 2020;2020:20160101.

[54] Lei Y, Zhang J, Schiavon CR, He M, Chen L, Shen H, et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function Via Downregulation of ACE2. Circ Res 2021;128:1323-6.

[55] Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, et al. SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID-19. J Hematol Oncol 2020;13:120.

[56] Zalyubovskaya NP. Biological Effect of Millimeter Radiowaves. Vrachebnoye Delo 1977;3:116-9.

[57] Zalyubovskaya NP, Kiselev RI. Effects of Radio Waves of a Millimeter Frequency Range on the Body of Man and Animals. Gigiyna I Sanitaria 1978;8:35-9.

[58] Wenzhong L, Li H. COVID-19 Attacks the 1-beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Heme Metabolism. ChemRxiv 2020;2020:26434.

[59] Lippi G, Mattiuzzi C. Hemoglobin Value May be Decreased in Patients with Severe Coronavirus Disease 2019. Hematol Transfus Cell Ther 2020;42:116-7.

[60] Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 Expression in Human Heart Indicates New Potential Mechanism of Heart Injury among Patients Infected with SARS-CoV-2. Cardiovasc Res 2020;116:1097-100.

[61] Algassim, AA, Elghazaly AA, Alnahdi AS, MohammedRahim OM, Alanazi AG, Aldhuwayhi NA, et al. Prognostic Significance of Hemoglobin Level and Autoimmune Hemolytic Anemia in SARS-CoV-2 Infection. Ann Hematol 2021;100:37-43.

[62] Ghahramani S, Tabrizi R, Lankarani KB, Kashani SMA, Rezaei S, Zeidi N, et al. Laboratory Features of Severe vs. Non-severe COVID-19 Patients in Asian Populations: A Systematic Review and Meta-analysis. Eur J Med Res 2020;25:30.

[63] Cheng L, Li HL, Li C, Liu C, Yan S, Chen H, et al. Ferritin in the Coronavirus Disease 2019 (COVIDvirus A Systematic Review and Meta‐etaemati. J Clin Lab Anal 2020;34:e23618.

[64] Tobin MJ, Laghi F, Jubran A. Why COVID-19 Silent Hypoxemia is Baffling to Physicians. Am J Respir 2020;202:356-60.

[65] Ejigu T, Patel N, Sharma A, Vanjarapu JMR, Nookala V. Packed Red Blood Cell Transfusion as a Potential Treatment Option in COVID-19 Patients with Hypoxemic Respiratory Failure: ACase Report. Cureus 2020;12:e8398.

[66] Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet 2020;395:1417-8.

[67] Betteridge DJ. What is Oxidative Stress? Metabolism 2000;49 2 Suppl 1:3-8.

[68] Giamarellos-Bourboulis E, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 2020;27:992-1000.

[69] Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired Type 1 Interferon Activity and Inflammatory Responses in Severe COVID-19 Patents. Science 2020;369:718-24.

[70] Dasdag S, Akdag MZ. The Link between Radiofrequencies Emitted from Wireless Technologies and Oxidative Stress. J Chem Neuroanat 2016;75:85-93.

[71] Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial Function and Oxidative Stress in Cardiovascular Diseases. Circ J 2009;73:411-8.

[72] Polonikov A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients. ACS Infect Dis 2020;6:1558-62.

[73] Guloyan V, Oganesian B, Baghdasaryan N, Yeh C, Singh M, Guilford F, et al. Glutathione Supplementation as an Adjunctive Therapy in COVID-19. Antioxidants (Basel, Switzerland) 2020;9:914.

[74] Marushchak M, Maksiv K, Krynytska I, Dutchak O, Behosh N. The Severity of Oxidative Stress in Comorbid Chronic Obstructive Pulmonary Disease (COPD) and Hypertension: Does it Depend on ACE and AGT Gene Polymorphisms? J Med Life 2019;12:426-34.

[75] Choromanska B, Mysiliwiec P, Luba M, Wojskowicz P, Mysliwiec H, Choromanska K, et al. The Impact of Hypertension and Metabolic Syndrome on Nitrosative Stress and Glutathione Metabolism in Patients with Morbid Obesity. Oxid Med Cell Longev 2020;2020:1057570.

[76] Lutchmansingh FK, Hsu JW, Bennett FI, Badaloo AV, Mcfarlane-Anderson N, Gordon-Strachan GM, et al. Glutathione Metabolism in Type 2 Diabetes and its Relationship with Microvascular Complications and Glycemia. PLoS One 2018;13:e0198626.

[77] Horowitz RI, Freeman PR, Bruzzese J. Efficacy of Glutathione Therapy in Relieving Dyspnea Associated with COVID-19 Pneumonia: A Report of 2 Cases. Respir Med 2020;30:101063.

[78] Peraica M, Marijanovic AM, Flajs D, Domijan AM, Gajski G, Garaj-Vrhovac G. Oxidative Stress in Workers  Occupationally Exposed to Microwave Radiation. Toxicol Lett 2008;180:38-9.

[79] Garaj-Vrhovac V, Gajski G, Pazanin S, Sarolic A, Domijan D, Flajs D, et al. Assessment of Cytogenetic Damage and Oxidative Stress in Personnel Occupationally Exposed to the Pulsed Microwave Radiation of Marine Radar Equipment. Int J Hyg Environ Health 2011;214:59-65.

[80] Zothansiama, Zosangzuali M, Lalramdinpuii M, JagetiaGC. Impact of Radiofrequency Radiation on DNA Damage and Antioxidants in Peripheral Blood Lymphocytes of Humans Residing in the Vicinity of Mobile Phone Base Stations. Electromagn Biol Med 2017;36:295-305.

[81] Moustafa YM, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM. Effects of Acute Exposure to the Radiofrequency Fields of Cellular Phones on Plasma Lipid Peroxide and Anti-oxidase Activities in Human Erythrocytes. J Pharm Biomed Anal 2001;26:605-8.

[82] Hassan NS, Rafaat BM, Aziz SW. Modulatory Role of Grape Seed Extract on Erythrocyte Hemolysis and Oxidative Stress Induced by Microwave Radiation in Rats. Int J Integr Biol 2010;10:106-11.

[83] Yurekli AI, Ozkan M, Kalkan T, Saybasili H, Tuncel H, Atukeren P, et al. GSM Base Station Electromagnetic Radiation and Oxidative Stress in Rats. Electromagn Biol Med 2006;25:177-88.

[84] Dasdag S, Bilgin HM, Akdag MZ, Celik H, Aksen F. Effect of Long-term Mobile Phone Exposure on Oxidativeantioxidative Processes and Nitric Oxide in Rats. Biotechnol Biotechnol Equip 2008;22:992-7.

[85] Alkis ME, Akdag MZ, Dasdag S. Effects of low‐intensity Microwave Radiation on Oxidant‐antioxidant Parameters and DNA Damage in the Liver of rats. Bioelectromagnetics 2021;42:76-85.

[86] Loscalzo J. Oxidant Stress: A Key Determinant of Atherothrombosis. Biochem Soc Trans 2003;31:1059-61.

[87] Tang N, Li D, Wang X, Sun Z. Abnormal Coagulation Parameters are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. J Thromb Haemost 2020;18:844-7.

[88] Klok FA, Kruip MJ, Van der Meer NJ, Arbous MS, Gommers DA, Kant KM, et al. Incidence of Thrombotic Complications in Critically ill ICU Patients with COVID-19. Thromb Res 2020;191:145-7.

[89] Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multi-Organ Response. Curr Probl Cardiol 2020;2020:100618.

[90] Yaghi S, Ishida K, Torres J, Mac Grory B, Raz E, Humbert K, et al. SARS-CoV-2 and Stroke in a New York Healthcare System. Stroke 2020;51:2002-11.

[91] Bandara P, Weller S. Cardiovascular Disease: Time to Identify Emerging Environmental Risk Factors. Eur J Prev Cardiol 2017;24:1819-23.

[92] Esmekaya MA, Ozer C, Seyhan N. 900 MHz Pulsemodulated Radiofrequency Radiation Induces Oxidative Stress on Heart, Lung, Testis, and Liver Tissues. Gen Physiol Biophys 2011;30:84-9.

[93] Cao X. COVID-19: Immunopathology and its Implications for Therapy. Nat Rev Immunol 2020;20:269-70.

[94] Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020;71:762-8.

[95] McRee DI. Soviet and Eastern European Research on Biological Effects of Microwave Radiation. Proc IEEE 1980;68:84-91.

[96] Baranski S. Effect of Chronic Microwave Irradiation on the Blood Forming System of Guinea Pigs and Rabbits. Aerosp Med 1971;42:1196-9.

[97] Nageswari KS, Sarma KR, Rajvanshi VS, Sharan R, Sharma M, Barathwal V, et al. Effect of Chronic Microwave Radiation on T Cell-mediated Immunity in the Rabbit. Int 1991;35:92-7.

[98] Adang D, Remacle C, Vander Vorst A. Results of a Longterm Low-level Microwave Exposure of Rats. IEEE Trans Microw Theory Tech 2009;57:2488-97.

[99] McRee DI, Faith R, McConnell EE, Guy AW. Longterm 2450-MHz cw Microwave Irradiation of Rabbits: Evaluation of Hematological and Immunological Effects. J Microw Power Electromagn Energy 1980;15:45-52.

[100] Johansson O. Disturbance of the Immune System by Electromagnetic Fields a Potentially Underlying Cause for Cellular Damage and Tissue Repair Reduction which Could Lead to Disease and Impairment. Pathophysiology 2009;16:157-77.

[101] Szmigielski S. Reaction of the Immune System to Lowlevel RF/MW Exposures. Sci Total Environ 2013;454- 455:393-400.

[102] Zhou F, Ting Y, Du R, Fan G, Liu Y, Liu Z, et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020;395:1054-62.

[103] Yang M. Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. ScienceOpen; 2020.

[104] Upadhyay J, Tiwari N, Ansari MN. Role of Inflammatory Markers in Corona Virus Disease (COVID-19) Patients: A Review. Exp Biol Med 2020;245:1368-75.

[105] Shandala MG, Rudnev MI, Vinogradov GK, Belonoshko NC, Goncharova NM. Immunological and hematological effects of microwaves at low power densities. In: Proceedings of International Union of Radio Science Symposium on Biological Effects of Electromagnetic Waves Vol. 84. Airlie, VA; 1977.

[106] Grigoriev YG, Ivanov AA, Lyaginskaya AM, Merkulov AV, Stepanov VS, Shagina NB. Autoimmune Processes after Long-term Low-level Exposure to Electromagnetic Fields (Experimental Results). Part I. Mobile Communications and Changes in Electromagnetic Conditions for the Population. Need for Additional Substantiation of Existing Hygienic Standards. Biophysics 2010;551041-5.

[107] Grigoriev YG. Evidence for Effects on the Immune System. Immune System and EMF RF. Bioinitiative Rep 2012;8:1-24.

[108] Szabo I, Rojavin MA, Rogers, TJ, Ziskin MC. Reactions of Keratinocytes to In Vitro Millimeter Wave Exposure. Bioelectromagnetics 2001;22:358-64.

[109] Makar V, Logani M, Szabo I, Ziskin M. Effect of Millimeter Waves on Cyclophosphamide Induced Suppression of T Cell Functions. Bioelectromagnetics 2003;24:356-65.

[110] Walleczek J. Electromagnetic Field Effects on Cells of the Immune System: The Role of Calcium Signaling. FASEB J 1992;6:3177-85.

[111] Panagopoulos DJ, Messini N, Karabarbounis A, Filippetis AL, Margaritis LH. A Mechanism for Action of Oscillating Electric Fields on Cells. Biochem Biophys Res Commun 2000;272:634-40.

[112] Pall ML. Electromagnetic Fields Act Via Activation of Voltage-gated Calcium Channels to Produce Beneficial or Adverse Effects. J Cell Mol Med 2013;17:958-65.

[113] Chen X, Cao R, Zhong W. Host Calcium Channels and Pumps in Viral Infections. Cells 2019;9:94.

[114] Solaimanzadeh I. Nifedipine and Amlodipine are Associated with Improved Mortality and Decreased Risk for Intubation and Mechanical Ventilation in Elderly Patients Hospitalized for COVID-19. Cureus 2020;12:e8069.

[115] Straus MR, Bidon M, Tang T, Whittaker GR, Daniel S. FDA Approved Calcium Channel Blockers Inhibit SARSCoV-2 Infectivity in Epithelial Lung Cells. BioRxiv 2020;2020:214577.

[116] Sen CK, Roy S, Packer L. Involvement of Intracellular Ca2+ in Oxidant-Induced NF-κB Activation. FEBS Lett 1996;385:58-62.

[117] Do LA, Anderson J, Mulholland EK, Licciardi PV. Can Data from Paediatric Cohorts Solve the COVID-19 Puzzle? PLoS Pathog 2020;16:e1008798.

[118] Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Back Transl Sci 2020;5:518-36.

[119] Dherange P, Lang J, Qian P, Oberfeld B, Sauer WH, Koplan B, et al. Arrhythmias and COVID-19: A Review. JACC Clin Electrophysiol 2020;6:1193-204.

[120] Colon CM, Barrios JG, Chiles JW, McElwee SK, Russell DW, Maddox WR, et al. Atrial Arrhythmias in COVID-19 Patients. JACC Clin Electrophysiol 2020;6:1189-90.

[121] Gökmen N, Erdem S, Toker KA, Ocmen E, Ozkure A. Analyzing Exposures to Electromagnetic Fields in an Intensive Care Unit. Turk J Anaesthesiol Reanim 2016;44:236-40.

[122] Sandoval Y, Januzzi JL, Jaffe AS. Cardiac Troponin for Assessment of Myocardial Injury in COVID-19. J Am Coll Cardiol 2020;76:1244-58.

[123] Dodge CH. Clinical and Hygienic Aspects of Exposure to Electromagnetic Fields. Biological Effects and Health Implications of Microwave Radiation. A Review of the Soviet and Eastern European Literature. In: Symposium Proceedings, Richmond, VA 1969 Sep 17.

[124] Jauchem JR. Exposure to Extremely Low Frequency Electromagnetic Fields and Radiofrequency Radiation: Cardiovascular Effects in Humans. Int Arch Occup Environ Health 1997;70:9-21.

[125] Black DR, Heynick LN. Radiofrequency Effects on Blood Cells, Cardiac, Endocrine, and Immunological Functions. Bioelectromagnetics 2003;6:S187-95.

[126] Havas M, Marrongelle J, Pollner B, Kelley E, Rees CRG, Tully L. Provocation Study Using Heart Rate Variability Shows Microwave Radiation from 2.4GHz Cordless Phone Affects Autonomic Nervous System. Eur J Oncol Library 2010;5:271-98.

[127] Saili L, Hanini A, Smirani C, Azzouz I, Sakly M, Abdelmelek H, et al. Effects of Acute Exposure to WIFI Signals (2.45GHz) on Heart Variability and Blood Pressure in Albino Rabbits. Environ Toxicol Pharmacol 2015;40:600-5.

[128] Cleary SF. Biological Effects and Health Implications of Microwave Radiation. A Review of the Soviet and Eastern European Literature. In: Symposium Proceedings, Richmond, VA 1969 Sep 17. BRH/DBE Report No. 70-2; 1970.

[129] Fiasca F, Minelli M, Maio D, Minelli M, Vergallo I, Necozione S, et al. Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO2 : A Nationwide Observational Study in Italy. Int J Environ Res Public Health 2020;17:9318.

[130] Hoyt JR, Langwig KE, Sun K, Parise KL, Li A, Wang Y, et al. Environmental Reservoir Dynamics Predict Global Infection Patterns and Population Impacts for the Fungal Disease White-nose Syndrome. PNAS 2020;117:7255-62.

[131] Federal Communications Commission (FCC). Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation. FCC96-326; ET Docket No. 93-62; 1996.

[132] Belyaev I, Dean A, Eger H, Hubmann G, Jandrisovits R, Kern M, et al. EUROPAEM EMF Guideline 2016 for the Prevention, Diagnosis and Treatment of EMF-related Health Problems and Illnesses. Rev Environ Health 2016;31:363-97.

[133] Huss A, Egger M, Hug K, Huwiler-Muntener K, Roosli M. Source of Funding and Results of Studies of Health Effects of Mobile Phone Use: Systematic Review of Experimental Studies. Environ Health Perspect 2007;115:14.

[134] Panagopoulos DJ. Comparing DNA Damage Induced by Mobile Telephony and Other Types of Man-made Electromagnetic Fields. Mutat Res 2019;781:53-62.

[135] Belyaev IY, Shcheglov VS, Alipov ED, Ushalov VD. Nonthermal Effects of Extremely High-frequency Microwaves on Chromatin Conformation in cells In Vitro Dependence on Physical, Physiological, and Genetic Factors. IEEE Trans Microw Theory Techn 2000;48:2172-9.

[136] Blackman CF, Kinney LS, Houyse DE, Joines WT. Multiple Power-density Windows and their Possible Origin. Bioelectromagnetics 1989;10:115-28.

[137] Panagopoulos DJ, Cammaerts MC, Favre D, Balmori A. Comments on Environmental Impact of Radiofrequency Fields from Mobile Phone Base Stations. Crit Rev Environ Sci Technol 2016;46:885-903.

[138] Kriebel D, Tickne J, Epstein P, Lemons PJ, Levins R, Loechler EL, et al. The Precautionary Principle in Environmental Science. Environ Health Perspect 2001;109:871-6.

[139] Tretyakov MY, Koshelev MA, Dorovskikh VV, Makarov DS, Rosenkranz PW. 60-GHz Oxygen Band: Precise Broadening and Central Frequencies of FineStructure Lines, Absolute Absorption Profile at Atmospheric Pressure, and Revision of Mixing Coefficients. J Mol Spectrosc 2005;231:1-14.

[140] Torgomyan H, Kalantaryan V, Trchounian A. Low Intensity Electromagnetic Irradiation with 70.6 and 73 GHz Frequencies Affects Escherichia coli Growth and Changes Water Properties. Cell Biochem Biophys 2011;60:275-81.

[141] Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse Health Effects of 5G Mobile Networking Technology Under Real-life Conditions. Toxicol Lett 2020;323:35-40.

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing