The effects of twenty-one nutrients and phytonutrients on cognitive function: A narrative review
Background and aim: Brain health is becoming more important to the average person as the number of people with cognitive impairments, such as Alzheimer’s disease, is rising significantly. The current FDA-approved pharmacotherapeutics for dementia neither cure nor halt cognitive decline; they just delay the worsening cognitive impairment. This narrative review summarizes the effects of nutrients and phytonutrients on cognitive function.
Methods: A comprehensive literature search of PubMed was performed to find clinical trials in humans that assessed the effects of nutrients and phytonutrients on cognitive function published in English between 2000 and 2021. Six independent reviewers evaluated the articles for inclusion in this review.
Results: Ninety-six articles were summarized in this narrative review. In total 21 categories of nutrients and phytonutrients were included, i.e., α-lipoic acid, Bacopa monnieri, B vitamins, cholinergic precursors, vitamin D, vitamin E, Ginkgo biloba, ginseng, lion’s mane mushroom, N-acetyl cysteine, omega-3 fatty acids, aloe polysaccharides, Rhodiola rosea, rosemary, saffron, tart cherries, turmeric, wild yam, Withania somnifera, xanthines, and zinc. Particular noteworthy effects on cognition included memory, recollection, attention, intelligence, vocabulary, recognition, response inhibition, arousal, performance enhancement, planning, creative thinking, reaction time, vigilance, task switching, orientation to time, place, and person, reading, writing, comprehension, accuracy, learning, information processing speed, executive function, mental flexibility, daily functioning, decrease in mental fatigue, and freedom from distractibility. Some nutrients and phytonutrients also improved mood and contentedness and reduced anxiety and the need for caregiving. These effects are not completely consistent or ubiquitous across all patient populations or health statuses. Adverse effects were minimal or nonexistent.
Conclusion: Due to the growing population of people with cognitive impairment and the lack of effective pharmacotherapeutics, it is prudent for those afflicted or their caregivers to find alternative treatments. Our narrative review shows that many of these nutrients and phytonutrients may be promising for treating some aspects of cognitive impairment, especially for people afflicted with Alzheimer’s disease.
Relevance for patients: As demonstrated in a number of clinical trials, healthy adults and patients with various health challenges (e.g., Alzheimer’s disease, mild cognitive impairment, multiple sclerosis, and Parkinson’s disease) exhibiting a wide range of severity in cognitive defects would be best served to consider multiple nutrients and phytonutrients to improve aspects of their cognitive function.
[1] GBD 2017 Causes of Death Collaborators. Global, Regional, and National Age-sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980- 2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018;392:1736-88.
[2] Alzheimer’s Association. 2020 Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2020;16:1-391.
[3] Hager K, Marahrens A, Kenklies M, Riederer P, Münch G. Alpha-lipoic Acid as a New Treatment Option for Azheimer Type Dementia. Arch Gerontol Geriatr 2001;32:275-82.
[4] Hager K, Kenklies M, McAfoose J, Engel J, Munch G. A-lipoic Acid as a New Treatment Option for Alzheimer’s Disease a 48 Months Follow-up Analysis. J Neural Transm 2007:189-193.
[5] Shinto L, Quinn J, Montine T, Dodge HH, Woodward W, Baldauf-Wagner S, et al. ARandomized Placebo-controlled Pilot Trial of Omega-3 Fatty Acids and Alpha Lipoic Acid in Alzheimer’s Disease. J Alzheimers Dis 2014;38:111-20.
[6] Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, et al. Effect of Vitamin E and Memantine on Functional Decline in Alzheimer Disease: The Team-ad va Cooperative Randomized Trial. JAMA 2014;311:33-44.
[7] Lloret A, Badia MC, Mora NJ, Pallardo FV, Alonso MD, Vina J. Vitamin E Paradox in Alzheimer’s Disease: It does not Prevent Loss of Cognition and may even be Detrimental. J Alzheimers Dis 2009;17:143-9.
[8] Breier A, Liffick E, Hummer TA, Vohs JL, Yang Z, Mehdiyoun NF, et al. Effects of 12-Month, Double-blind n-acetyl Cysteine on Symptoms, Cognition and Brain Morphology in Early Phase Schizophrenia Spectrum Disorders. Schizophr Res 2018;199:395-402.
[9] Rapado-Castro M, Dodd S, Bush AI, Malhi GS, Skvarc DR, On ZX, et al. Cognitive Effects of Adjunctive N-acetyl Cysteine in Psychosis. Psychol Med 2017;47:866-76.
[10] Hoffer ME, Balaban C, Slade MD, Tsao JW, Hoffer B. Amelioration of Acute Sequelae of Blast Induced Mild Traumatic Brain Injury by N-acetyl Cysteine: A Doubleblind, Placebo Controlled Study. PLoS One 2013;8:e54163.
[11] Aisen PS, Schneider LS, Sano M, Diaz-Arrastia R, van Dyck CH, Weiner MF, et al. High-dose B Vitamin Supplementation and Cognitive Decline in Alzheimer Disease: A Randomized Controlled Trial. JAMA 2008;300:1774-83.
[12] Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year Folic Acid Supplementation on Cognitive Function in Older Adults in the Facit Trial: A Randomised, Double Blind, Controlled Trial. Lancet 2007;369:208-16.
[13] McMahon JA, Green TJ, Skeaff CM, Knight RG, Mann JI, Williams SM. A Controlled Trial of Homocysteine Lowering and Cognitive Performance. N Engl J Med 2006;354:2764-72.
[14] de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and Clinical Outcomes of Homocysteinelowering B-Vitamin Treatment in Mild Cognitive Impairment: A Randomized Controlled Trial. Int J Geriatr Psychiatry 2012;27:592-600.
[15] Cotroneo AM, Castagna A, Putignano S, Lacava R, Fanto F, Monteleone F, et al. Effectiveness and Safety of Citicoline in Mild Vascular Cognitive Impairment: The Ideale Study. Clin Interv Aging 2013;8:131-7.
[16] Alvarez-Sabin J, Ortega G, Jacas C, Santamarina E, Maisterra O, Ribo M, et al. Long-term Treatment with Citicoline may Improve Poststroke Vascular Cognitive Impairment. Cerebrovasc Dis 2013;35:146-54.
[17] Knott V, Smith D, de la Salle S, Impey D, Choueiry J, Beaudry E, et al. Cdp-Choline: Effects of the Procholine Supplement on Sensory Gating and Executive Function in Healthy Volunteers Stratified for Low, Medium and High p50 Suppression. J Psychopharmacol 2014;28:1095-108.
[18] De Jesus Moreno Moreno M. Cognitive Improvement in Mild to Moderate Alzheimer’s Dementia after Treatment with the Acetylcholine Precursor Choline Alfoscerate: A Multicenter, Double-blind, Randomized, Placebocontrolled Trial. Clin Ther 2003;25:178-93.
[19] Kato-Kataoka A, Sakai M, Ebina R, Nonaka C, Asano T, Miyamori T. Soybean-derived Phosphatidylserine Improves Memory Function of the Elderly Japanese Subjects with Memory Complaints. J Clin Biochem Nutr 2010;47:246-55.
[20] Richter Y, Herzog Y, Lifshitz Y, Hayun R, Zchut S. The Effect of Soybean-derived Phosphatidylserine on Cognitive Performance in Elderly with Subjective Memory Complaints: A Pilot Study. Clin Interv Aging 2013;8:557-63.
[21] More MI, Freitas U, Rutenberg D. Positive Effects of Soy Lecithin-derived Phosphatidylserine Plus Phosphatidic Acid on Memory, Cognition, Daily Functioning, and Mood in Elderly Patients with Alzheimer’s Disease and Dementia. Adv Ther 2014;31:1247-62.
[22] Darwish H, Haddad R, Osman S, Ghassan S, Yamout B, Tamim H, et al. Effect of Vitamin D Replacement on Cognition in Multiple Sclerosis Patients. Sci Rep 2017;7:45926.
[23] Hu J, Jia J, Zhang Y, Miao R, Huo X, Ma F. Effects of Vitamin D3 Supplementation on Cognition and Blood Lipids: A 12-Month Randomised, Double-Blind, Placebo-controlled Trial. J Neurol Neurosurg Psychiatry 2018;89:1341-7.
[24] Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F. Effects of Vitamin D Supplementation on Cognitive Function and Blood Abeta-related Biomarkers in Older Adults with Alzheimer’s Disease: A Randomised, Double-blind, Placebo-controlled Trial. J Neurol Neurosurg Psychiatry 2019;90:1347-52.
[25] Dean AJ, Bellgrove MA, Hall T, Phan WM, Eyles DW, Kvaskoff D, et al. Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults--a Randomised Controlled Trial. PLoS One 2011;6:e25966.
[26] Pettersen JA. Does High Dose Vitamin D Supplementation Enhance Cognition? A Randomized Trial in Healthy Adults. Exp Gerontol 2017;90:90-7.
[27] Chiu CC, Su KP, Cheng TC, Liu HC, Chang CJ, Dewey ME, et al. The Effects of Omega-3 Fatty Acids Monotherapy in Alzheimer’s Disease and Mild Cognitive Impairment: A Preliminary Randomized Double-blind Placebo-controlled Study. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1538-44.
[28] Maylor EA, Simpson EE, Secker DL, Meunier N, AndriolloSanchez M, Polito A, et al. Effects of Zinc Supplementation on Cognitive Function in Healthy Middle-aged and Older Adults: The Zenith Study. Br J Nutr 2006;96:752-60.
[29] Wang C, Szabo JS, Dykman RA. Effects of a Carbohydrate Supplement Upon Resting Brain Activity. Integr Physiol Behav Sci 2004;39:126-38.
[30] Stancil AN, Hicks LH. Glyconutrients and Perception, Cognition, and Memory. Percept Mot Skills 2009;108:259-70.
[31] Best T, Bryan J, Burns N. An Investigation of the Effects of Saccharides on the Memory Performance of Middle-aged Adults. J Nutr Health Aging 2008;12:657-62.
[32] Best T, Howe P, Bryan J, Buckley J, Scholey A. Acute Effects of a Dietary Non-starch Polysaccharide Supplement on Cognitive Performance in Healthy Middle-aged Adults. Nutr Neurosci 2015;18:76-86.
[33] Lewis JE, McDaniel HR, Agronin ME, Loewenstein DA, Riveros J, Mestre R, et al. The Effect of an Aloe Polymannose Multinutrient Complex on Cognitive and Immune Functioning in Alzheimer’s Disease. J Alzheimers Dis 2013;33:393-406.
[34] McDaniel HR, LaGanke C, Bloom L, Goldberg S, Hensel J, Lantigua LA, et al. The Effect of Broad-spectrum Dietary Supplementation on Quality of Life, Symptom Severity, and Functioning in Multiple Sclerosis. J Diet Suppl 2020;17:718-32.
[35] Sadhu A, Upadhyay P, Agrawal A, Ilango K, Karmakar D, Singh GP, et al. Management of Cognitive Determinants in Senile Dementia of Alzheimer’s Type: Therapeutic Potential of a Novel Polyherbal Drug Product. Clin Drug Investig 2014;34:857-69.
[36] Goswami S, Saoji A, Kumar N, Thawani V, Tiwari M, Thawani M. Effect of Bacopa monnieri on Cognitive Functions in Alzheimer’s Disease Patients. Int J Collaborative Res Intern Med Public Health 2011;3:285-93.
[37] Kumar N, Abichandani LG, Thawani V, Gharpure KJ, Naidu MU, Venkat Ramana G. Efficacy of Standardized Extract of Bacopa monnieri (Bacognize(r)) on Cognitive Functions of Medical Students: A Six-week, Randomized Placebo-controlled Trial. Evid Based Complement Alternat Med 2016;2016:4103423.
[38] Calabrese C, Gregory WL, Leo M, Kraemer D, Bone K, Oken B. Effects of a Standardized Bacopa monnieri Extract on Cognitive Performance, Anxiety, and Depression in the Elderly: A Randomized, Double-blind, Placebo-controlled Trial. J Altern Complement Med 2008;14:707-13.
[39] Stough C, Lloyd J, Clarke J, Downey LA, Hutchison CW, Rodgers T, et al. The Chronic Effects of an Extract of Bacopa monniera (Brahmi) on Cognitive Function in Healthy Human Subjects. Psychopharmacology (Berl) 2001;156:481-4.
[40] Stough C, Downey LA, Lloyd J, Silber B, Redman S, Hutchison C, et al. Examining the Nootropic Effects of a Special Extract of Bacopa monniera on Human Cognitive Functioning: 90 Day Double-blind Placebo-controlled Randomized Trial. Phytother Res 2008;22:1629-34.
[41] Morgan A, Stevens J. Does Bacopa monnieri Improve Memory Performance in Older Persons? Results of a Randomized, Placebo-controlled, Double-blind Trial. J Altern Complement Med 2010;16:753-9.
[42] Attia A, Rapp SR, Case LD, D’Agostino R, Lesser G, Naughton M, et al. Phase II Study of Ginkgo biloba in Irradiated Brain Tumor Patients: Effect on Cognitive Function, Quality of Life, and Mood. J Neurooncol 2012;109:357-63.
[43] Lewis JE, Melillo AB, Tiozzo E, Chen L, Leonard S, Howell M, et al. A Double-blind, Randomized Clinical Trial of Dietary Supplementation on Cognitive and Immune Functioning in Healthy Older Adults. BMC Complement Altern Med 2014;14:43.
[44] Solomon PR, Adams F, Silver A, Zimmer J, DeVeaux R. Ginkgo for Memory Enhancement: A Randomized Controlled Trial. JAMA 2002;288:835-40.
[45] Mix JA, Crews WD Jr. An Examination of the Efficacy of Ginkgo biloba Extract egb761 on the Neuropsychologic Functioning of Cognitively Intact Older Adults. J Altern Complement Med 2000;6:219-29.
[46] Mix JA, Crews WD Jr. A Double-blind, Placebocontrolled, Randomized Trial of Ginkgo biloba Extract egb 761 in a Sample of Cognitively Intact Older Adults: Neuropsychological Findings. Hum Psychopharmacol 2002;17:267-77.
[47] Kaschel R. Specific Memory Effects of Ginkgo biloba Extract egb 761 in Middle-aged Healthy Volunteers. Phytomedicine 2011;18:1202-7.
[48] Snitz BE, O’Meara ES, Carlson MC, Arnold AM, Ives DG, Rapp SR, et al. Ginkgo biloba for Preventing Cognitive Decline in Older Adults: A Randomized Trial. JAMA 2009;302:2663-70.
[49] Kanowski S, Hoerr R. Ginkgo biloba Extract egb 761 in Dementia: Intent-to-Treat Analyses of a 24-Week, Multicenter, Double-blind, Placebo-controlled, Randomized Trial. Pharmacopsychiatry 2003;36:297-303.
[50] McCarney R, Fisher P, Iliffe S, van Haselen R, Griffin M, van der Meulen J, et al. Ginkgo biloba for Mild to Moderate Dementia in a Community Setting: A Pragmatic, Randomised, Parallel-group, Double-blind, Placebocontrolled Trial. Int J Geriatr Psychiatry 2008;23:1222-30.
[51] Mazza M, Capuano A, Bria P, Mazza S. Ginkgo biloba and Donepezil: A Comparison in the Treatment of Alzheimer’s Dementia in a Randomized Placebo-controlled Doubleblind Study. Eur J Neurol 2006;13:981-5.
[52] Napryeyenko O, Sonnik G, Tartakovsky I. Efficacy and Tolerability of Ginkgo biloba Extract egb 761 by Type of Dementia: Analyses of a Randomised Controlled Trial. J Neurol Sci 2009;283:224-9.
[53] Herrschaft H, Nacu A, Likhachev S, Sholomov I, Hoerr R, Schlaefke S. Ginkgo biloba Extract egb 761(r) in Dementia with Neuropsychiatric Features: A Randomised, Placebocontrolled Trial to Confirm the Efficacy and Safety of a Daily Dose of 240 mg. J Psychiatr Res 2012;46:716-23.
[54] Lovera JF, Kim E, Heriza E, Fitzpatrick M, Hunziker J, Turner AP, et al. Ginkgo biloba Does not Improve Cognitive Function in ms: A Randomized Placebo-controlled Trial. Neurology 2012;79:1278-84.
[55] Gavrilova SI, Preuss UW, Wong JW, Hoerr R, Kaschel R, Bachinskaya N, et al. Efficacy and Safety of Ginkgo biloba Extract egb 761 in Mild Cognitive Impairment with Neuropsychiatric Symptoms: A Randomized, Placebocontrolled, Double-blind, Multi-center Trial. Int J Geriatr Psychiatry 2014;29:1087-95.
[56] Beck SM, Ruge H, Schindler C, Burkart M, Miller R, Kirschbaum C, et al. Effects of Ginkgo biloba Extract egb 761(r) on Cognitive Control Functions, Mental Activity of the Prefrontal Cortex and Stress Reactivity in Elderly Adults with Subjective Memory Impairment a Randomized Double-blind Placebo-controlled Trial. Hum Psychopharmacol 2016;31:227-42.
[57] Li S, Cao G, Deng Q, Zhu D, Yan F. Effect of Pushen Capsule for Treating Vascular Mild Cognitive Impairment: A Pilot Observational Study. J Int Med Res 2019;47:5483-96.
[58] Wesnes KA, Ward T, McGinty A, Petrini O. The Memory Enhancing Effects of a Ginkgo biloba/Panax ginseng Combination in Healthy Middle-aged Volunteers. Psychopharmacology (Berl) 2000;152:353-61.
[59] Park KC, Jin H, Zheng R, Kim S, Lee SE, Kim BH, et al. Cognition Enhancing Effect of Panax ginseng in Korean Volunteers with Mild Cognitive Impairment: A Randomized, Double-blind, Placebo-controlled Clinical Trial. Transl Clin Pharmacol 2019;27:92-7.
[60] Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY, et al. An Open-label Trial of Korean red Ginseng as an Adjuvant Treatment for Cognitive Impairment in Patients with Alzheimer’s Disease. Eur J Neurol 2008;15:865-8.
[61] Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY, et al. Heat-processed Ginseng Enhances the Cognitive Function in Patients with Moderately Severe Alzheimer’s Disease. Nutr Neurosci 2012;15:278-82.
[62] Mariage PA, Hovhannisyan A, Panossian AG. Efficacy of Panax ginseng Meyer Herbal Preparation hrg80 in Preventing and Mitigating Stress-induced Failure of Cognitive Functions in Healthy Subjects: A Pilot, Randomized, Double-blind, Placebo-controlled Crossover Trial. Pharmaceuticals (Basel) 2020;13:57.
[63] Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng Enhances Cognitive Performance in Alzheimer Disease. Alzheimer Dis Assoc Disord 2008;22:222-6.
[64] Scholey A, Ossoukhova A, Owen L, Ibarra A, Pipingas A,He K, et al. Effects of American Ginseng (Panax quinquefolius) on Neurocognitive Function: An Acute, Randomised, Double-blind, Placebo-controlled, Crossover Study. Psychopharmacology (Berl) 2010;212:345-56.
[65] Chen EY, Hui CL. Ht1001, a Proprietary North American Ginseng Extract, Improves Working Memory in Schizophrenia: A Double-blind, Placebo-controlled Study. Phytother Res 2012;26:1166-72.
[66] Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. Improving Effects of the Mushroom Yamabushitake (Hericium erinaceus) on Mild Cognitive Impairment: A Doubleblind Placebo-controlled Clinical Trial. Phytother Res 2009;23:367-72.
[67] Saitsu Y, Nishide A, Kikushima K, Shimizu K, Ohnuki K. Improvement of Cognitive Functions by Oral Intake of Hericium erinaceus. Biomed Res 2019;40:125-31.
[68] Darbinyan V, Kteyan A, Panossian A, Gabrielian E, Wikman G, Wagner H. Rhodiola rosea in Stress Induced Fatigue--a Double Blind Cross-over Study of a Standardized Extract shr-5 with a Repeated Low-dose Regimen on the Mental Performance of Healthy Physicians during Night Duty. Phytomedicine 2000;7:365-71.
[69] Cropley M, Banks AP, Boyle J. The Effects of Rhodiola rosea L. Extract on Anxiety, Stress, Cognition and other Mood Symptoms. Phytother Res 2015;29:1934-9.
[70] Fintelmann V, Gruenwald J. Efficacy and Tolerability of a Rhodiola rosea Extract in Adults with Physical and Cognitive Deficiencies. Adv Ther 2007;24:929-39.
[71] Aslanyan G, Amroyan E, Gabrielyan E, Nylander M, Wikman G, Panossian A. Double-blind, Placebo-controlled, Randomised Study of Single Dose Effects of Adapt-232 on Cognitive Functions. Phytomedicine 2010;17:494-9.
[72] Pengelly A, Snow J, Mills SY, Scholey A, Wesnes K, Butler LR. Short-term Study on the Effects of Rosemary on Cognitive Function in an Elderly Population. J Med Food 2012;15:10-7.
[73] Lindheimer JB, Loy BD, O’Connor PJ. Short-term Effects of Black Pepper (Piper nigrum) and Rosemary (Rosmarinus officinalis and Rosmarinus eriocalyx) on Sustained Attention and on Energy and Fatigue Mood States in Young Adults with Low Energy. J Med Food 2013;16:765-71.
[74] Moss M, Smith E, Milner M, McCready J. Acute Ingestion of Rosemary Water: Evidence of Cognitive and Cerebrovascular Effects in Healthy Adults. J Psychopharmacol 2018;32:1319-29.
[75] Moss M, Cook J, Wesnes K, Duckett P. Aromas of Rosemary and Lavender Essential Oils Differentially Affect Cognition and Mood in Healthy Adults. Int J Neurosci 2003;113:15-38.
[76] Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, et al. Saffron in the Treatment of Patients with Mild to Moderate Alzheimer’s Disease: A 16-week, Randomized and Placebo-controlled Trial. J Clin Pharm Ther 2010;35:581-8.
[77] Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, et al. A22-week, Multicenter, Randomized, Double-blind Controlled Trial of Crocus sativus in the Treatment of Mild-to-moderate Alzheimer’s Disease. Psychopharmacology (Berl) 2010;207:637-43.
[78] Farokhnia M, Sabet MS, Iranpour N, Gougol A, Yekehtaz H, Alimardani R, et al. Comparing the Efficacy and Safety of Crocus sativus L. with Memantine in Patients with Moderate to Severe Alzheimer’s Disease: A Doubleblind Randomized Clinical Trial. Hum Psychopharmacol 2014;29:351-9.
[79] Tsolaki M, Karathanasi E, Lazarou I, Dovas K, Verykouki E, Karacostas A, et al. Efficacy and Safety of Crocus sativus L. in Patients with Mild Cognitive Impairment: One Year Single-blind Randomized, with Parallel Groups, Clinical Trial. J Alzheimers Dis 2016;54:129-33.
[80] Kent K, Charlton K, Roodenrys S, Batterham M, Potter J, Traynor V, et al. Consumption of Anthocyanin-rich Cherry Juice for 12 Weeks Improves Memory and Cognition in Older Adults with Mild-to-moderate Dementia. Eur J Nutr 2017;56:333-41.
[81] Caldwell K, Charlton KE, Roodenrys S, Jenner A. Anthocyanin-rich Cherry Juice Does not Improve Acute Cognitive Performance on Ravlt. Nutr Neurosci 2016;19:423-4.
[82] Keane KM, Haskell-Ramsay CF, Veasey RC, Howatson G. Montmorency Tart Cherries (Prunus cerasus L.) Modulate Vascular Function Acutely, in the Absence of Improvement in Cognitive Performance. Br J Nutr 2016;116:1935-44.
[83] Cox KH, Pipingas A, Scholey AB. Investigation of the Effects of Solid Lipid Curcumin on Cognition and Mood in a Healthy Older Population. J Psychopharmacol 2015;29:642-51.
[84] Cox KH, White DJ, Pipingas A, Poorun K, Scholey A. Further Evidence of Benefits to Mood and Working Memory from Lipidated Curcumin in Healthy Older People: A 12-week, Double-blind, Placebo-controlled, Partial Replication Study. Nutrients 2020;12:1678.
[85] Rainey-Smith SR, Brown BM, Sohrabi HR, Shah T, Goozee KG, Gupta VB, et al. Curcumin and Cognition: A Randomised, Placebo-controlled, Doubleblind Study of Community-dwelling Older Adults. Br J Nutr 2016;115:2106-13.
[86] Small GW, Siddarth P, Li Z, Miller KJ, Ercoli L, Emerson ND, et al. Memory and Brain Amyloid and Tau Effects of a Bioavailable Form of Curcumin in Nondemented Adults: A Double-blind, Placebo-controlled 18-month Trial. Am J Geriatr Psychiatry 2018;26:266-77.
[87] Tohda C, Yang X, Matsui M, Inada Y, Kadomoto E, Nakada S, et al. Diosgenin-rich Yam Extract Enhances Cognitive Function: A Placebo-controlled, Randomized, Double-blind, Crossover Study of Healthy Adults. Nutrients 2017;9:1160.
[88] Choudhary D, Bhattacharyya S, Bose S. Efficacy and Safety of Ashwagandha (Withania somnifera (L.) Dunal) Root Extract in Improving Memory and Cognitive Functions. J Diet Suppl 2017;14:599-612.
[89] Chengappa KN, Bowie CR, Schlicht PJ, Fleet D, Brar JS, Jindal R. Randomized Placebo-controlled Adjunctive Study of an Extract of Withania somnifera for Cognitive Dysfunction in Bipolar Disorder. J Clin Psychiatry 2013;74:1076-83.
[90] Soar K, Chapman E, Lavan N, Jansari AS, Turner JJ. Investigating the Effects of Caffeine on Executive Functions Using Traditional Stroop and a New Ecologically-Valid Virtual Reality Task, the Jansari Assessment of Executive Functions (jef((c))). Appetite 2016;105:156-63.
[91] Smith AP. Caffeine, Extraversion and Working Memory. J Psychopharmacol 2013;27:71-6.
[92] Haskell-Ramsay CF, Jackson PA, Forster JS, Dodd FL, Bowerbank SL, Kennedy DO. The Acute Effects of Caffeinated Black Coffee on Cognition and Mood in Healthy Young and Older Adults. Nutrients 2018;10:1386.
[93] Higashi T, Sone Y, Ogawa K, Kitamura YT, Saiki K, Sagawa S, et al. Changes in Regional Cerebral Blood Volume in Frontal Cortex during Mental Work with and Without Caffeine Intake: Functional Monitoring Using Near-infrared Spectroscopy. J Biomed Opt 2004;9:788-93.
[94] Hindmarch I, Rigney U, Stanley N, Quinlan P, Rycroft J, Lane J. A Naturalistic Investigation of the Effects of Daylong Consumption of Tea, Coffee and Water on Alertness, Sleep Onset and Sleep Quality. Psychopharmacology (Berl) 2000;149:203-16.
[95] De Bruin EA, Rowson MJ, Van Buren L, Rycroft JA, Owen GN. Black Tea Improves Attention and Self-reported Alertness. Appetite 2011;56:235-40.
[96] Dietz C, Dekker M, Piqueras-Fiszman B. An Intervention Study on the Effect of Matcha Tea, in Drink and Snack Bar Formats, on Mood and Cognitive Performance. Food Res Int 2017;99:72-83.
[97] Smit HJ, Gaffan EA, Rogers PJ. Methylxanthines are the Psycho-pharmacologically Active Constituents of Chocolate. Psychopharmacology (Berl) 2004;176:412-9.
[98] Sumiyoshi E, Matsuzaki K, Sugimoto N, Tanabe Y, Hara T, Katakura M, et al. Sub-chronic Consumption of Dark Chocolate Enhances Cognitive Function and Releases Nerve Growth Factors: AParallel-group Randomized Trial. Nutrients 2019;11:2800.
[99] Maczurek A, Hager K, Kenklies M, Sharman M, Martins R, Engel J, et al. Lipoic Acid as an Anti-inflammatory and Neuroprotective Treatment for Alzheimer’s Disease. Adv Drug Deliv Rev 2008;60:1463-70.
[100] Packer L, Tritschler HJ, Wessel K. Neuroprotection by the Metabolic Antioxidant Alpha-lipoic Acid. Free Radic Biol Med 1997;22:359-78.
[101] McHardy SF, Wang HL, McCowen SV, Valdez MC. Recent Advances in Acetylcholinesterase Inhibitors and Reactivators: An Update on the Patent Literature (2012- 2015). Expert Opin Ther Pat 2017;27:455-76.
[102] Lazarevic-Pasti T, Leskovac A, Momic T, Petrovic S, Vasic V. Modulators of Acetylcholinesterase Activity: From Alzheimer’s Disease to Anti-cancer Drugs. Curr Med Chem 2017;24:3283-309.
[103] Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J Psychiatr Res 1975;12:189-98.
[104] Rosen WG, Mohs RC, Davis KL. A New Rating Scale for Alzheimer’s Disease. Am J Psychiatry 1984;141:1356-64.
[105] Nishida Y, Ito S, Ohtsuki S, Yamamoto N, Takahashi T, Iwata N, et al. Depletion of Vitamin E Increases Amyloid Beta Accumulation by Decreasing its Clearances from Brain and Blood in a Mouse Model of Alzheimer Disease. J Biol Chem 2009;284:33400-8.
[106] Grundman M. Vitamin E and Alzheimer Disease: The Basis for Additional Clinical Trials. Am J Clin Nutr 2000;71:630S-6.
[107] Halliwell B, Gutteridge JM. Oxygen Radicals and the Nervous System. Trends Neurosci 1985;8:22-6.
[108] Behl C, Davis JB, Lesley R, Schubert D. Hydrogen Peroxide Mediates Amyloid Beta Protein Toxicity. Cell 1994;77:817-27.
[109] Klatte ET, Scharre DW, Nagaraja HN, Davis RA, Beversdorf DQ. Combination Therapy of Donepezil and Vitamin E in Alzheimer Disease. Alzheimer Dis Assoc Disord 2003;17:113-6.
[110] Brewer GJ. Why Vitamin E Therapy Fails for Treatment of Alzheimer’s Disease. J Alzheimers Dis 2010;19:27-30.
[111] Whillier S, Raftos JE, Chapman B, Kuchel PW. Role of N-acetylcysteine and Cystine in Glutathione Synthesis in Human Erythrocytes. Redox Rep 2009;14:115-24.
[112] Buchanan RW, Kreyenbuhl J, Kelly DL, Noel JM, Boggs DL, Fischer BA, et al. The 2009 Schizophrenia Port Psychopharmacological Treatment Recommendations and Summary Statements. Schizophr Bull 2010;36:71-93.
[113] Breier A, Schreiber JL, Dyer J, Pickar D. National Institute of Mental Health Longitudinal Study of Chronic Schizophrenia. Prognosis and Predictors of Outcome. Arch Gen Psychiatry 1991;48:239-46.
[114] Andreasen NC, Nopoulos P, Magnotta V, Pierson R, Ziebell S, Ho BC. Progressive Brain Change in Schizophrenia: A Prospective Longitudinal Study of Firstepisode Schizophrenia. Biol Psychiatry 2011;70:672-9.
[115] Keshavan MS, Sanders RD, Pettegrew JW, Dombrowsky SM, Panchalingam KS. Frontal Lobe Metabolism and Cerebral Morphology in Schizophrenia: 31p Mrs and Mri Studies. Schizophr Res 1993;10:241-6.
[116] Muller N, Weidinger E, Leitner B, Schwarz MJ. The Role of Inflammation in Schizophrenia. Front Neurosci 2015;9:372.
[117] Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA. Nmda Antagonist Neurotoxicity: Mechanism and Prevention. Science 1991;254:1515-8.
[118] Chen G, Shi J, Hu Z, Hang C. Inhibitory Effect on Cerebral Inflammatory Response Following Traumatic Brain Injury in Rats: A Potential Neuroprotective Mechanism of N-acetylcysteine. Mediators Inflamm 2008;2008:716458.
[119] Baker DA, Shen H, Kalivas PW. Cystine/Glutamate Exchange Serves as the Source for Extracellular Glutamate: Modifications by Repeated Cocaine Administration. Amino Acids 2002;23:161-2.
[120] Miskowiak KW, Ehrenreich H, Christensen EM, KessingLV, Vinberg M. Recombinant Human Erythropoietin to Target Cognitive Dysfunction in Bipolar Disorder: A Doubleblind, Randomized, Placebo-controlled Phase 2 Trial. J Clin Psychiatry 2014;75:1347-55.
[121] Arciniegas DB, Anderson CA, Topkoff J, McAllister TW. Mild Traumatic Brain Injury: ANeuropsychiatric Approach to Diagnosis, Evaluation, and Treatment. Neuropsychiatr Dis Treat 2005;1:311-27.
[122] Elder GA, Cristian A. Blast-related Mild Traumatic Brain Injury: Mechanisms of Injury and Impact on Clinical Care. Mt Sinai J Med 2009;76:111-8.
[123] Mitchell ES, Conus N, Kaput J. B Vitamin Polymorphisms and Behavior: Evidence of Associations with Neurodevelopment, Depression, Schizophrenia, Bipolar Disorder and Cognitive Decline. Neurosci Biobehav Rev 2014;47:307-20.
[124] Mikkelsen K, Stojanovska L, Tangalakis K, Bosevski M, Apostolopoulos V. Cognitive Decline: A Vitamin B Perspective. Maturitas 2016;93:108-13.
[125] Haggarty P. B-vitamins, Genotype and Disease Causality. Proc Nutr Soc 2007;66:539-47.
[126] Ford AH, Almeida OP. Effect of Vitamin B Supplementation on Cognitive Function in the Elderly: A Systematic Review and Meta-analysis. Drugs Aging 2019;36:419-34.
[127] Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairment. Lancet 2006;367:1262-70.
[128] Amenta F, Parnetti L, Gallai V, Wallin A. Treatment of Cognitive Dysfunction Associated with Alzheimer’s Disease with Cholinergic Precursors. Ineffective Treatments or Inappropriate Approaches? Mech Ageing Dev 2001;122:2025-40.
[129] Wiedeman AM, Barr SI, Green TJ, Xu Z, Innis SM, Kitts DD. Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients 2018;10:1513.
[130] Synoradzki K, Grieb P. Citicoline: A Superior Form of Choline? Nutrients 2019;11:1569.
[131] Lees R, Fearon P, Harrison JK, Broomfield NM, Quinn TJ. Cognitive and Mood Assessment in Stroke Research: Focused Review of Contemporary Studies. Stroke 2012;43:1678-80.
[132] Davalos A, Castillo J, Alvarez-Sabin J, Secades JJ, Mercadal J, Lopez S, et al. Oral Citicoline in Acute Ischemic Stroke: An Individual Patient Data Pooling Analysis of Clinical Trials. Stroke 2002;33:2850-7.
[133] Thoma RJ, Hanlon FM, Moses SN, Edgar JC, Huang M, Weisend MP, et al. Lateralization of Auditory Sensory Gating and Neuropsychological Dysfunction in Schizophrenia. Am J Psychiatry 2003;160:1595-605.
[134] Court J, Spurden D, Lloyd S, McKeith I, Ballard C, Cairns N, et al. Neuronal Nicotinic Receptors in Dementia with Lewy Bodies and Schizophrenia: Alpha-Bungarotoxin and Nicotine Binding in the Thalamus. J Neurochem 1999;73:1590-7.
[135] Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, et al. Linkage of a Neurophysiological Deficit in Schizophrenia to a Chromosome 15 Locus. Proc Natl Acad Sci U S A 1997;94:587-92.
[136] Fayuk D, Yakel JL. Regulation of Nicotinic Acetylcholine Receptor Channel Function by Acetylcholinesterase Inhibitors in Rat Hippocampal Ca1 Interneurons. Mol Pharmacol 2004;66:658-66.
[137] Holick MF. Vitamin D Deficiency. N Engl J Med 2007;357:266-81.
[138] Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2011;96:1911-30.
[139] Sonnenberg J, Luine VN, Krey LC, Christakos S. 1,25-dihydroxyvitamin d3 Treatment Results in Increased Choline Acetyltransferase Activity in Specific Brain Nuclei. Endocrinology 1986;118:1433-9.
[140] Landfield PW, Cadwallader-Neal L. Long-term Treatment with Calcitriol (1,25(oh)2 vit d3) Retards a Biomarker of Hippocampal Aging in Rats. Neurobiol Aging 1998;19:469-77.
[141] Masoumi A, Goldenson B, Ghirmai S, Avagyan H, Zaghi J, Abel K, et al. 1alpha,25-dihydroxyvitamin d3 Interacts with Curcuminoids to Stimulate Amyloid-beta Clearance by Macrophages of Alzheimer’s Disease Patients. J Alzheimers Dis 2009;17:703-17.
[142] Buell JS, Dawson-Hughes B. Vitamin D and Neurocognitivie Dysfunction: Preventing Decline? Mol Aspects Med 2008;29:415-22.
[143] Dickens AP, Lang IA, Langa KM, Kos K, Llewellyn DJ. Vitamin D, Cognitive Dysfunction and Dementia in Older Adults. CNS Drugs 2011;25:629-39.
[144] Wilkins CH, Sheline YI, Roe CM, Birge SJ, Morris JC. Vitamin D Deficiency is Associated with Low Mood and Worse Cognitive Performance in Older Adults. Am J Geriatr Psychiatry 2006;14:1032-40.
[145] Annweiler C, Allali G, Allain P, Bridenbaugh S, Schott AM, Kressig RW, et al. Vitamin D and Cognitive Performance in Adults: A Systematic Review. Eur J Neurol 2009;16:1083-9.
[146] Balion C, Griffith LE, Strifler L, Henderson M, Patterson C, Heckman G, et al. Vitamin D, Cognition, and Dementia: A Systematic Review and Meta-analysis. Neurology 2012;79:1397-405.
[147] Correale J, Ysrraelit MC, Gaitan MI. Immunomodulatory Effects of Vitamin D in Multiple Sclerosis. Brain 2009;132:1146-60.
[148] Amato MP, Langdon D, Montalban X, Benedict RH, DeLuca J, Krupp LB, et al. Treatment of Cognitive Impairment in Multiple Sclerosis: Position Paper. J Neurol 2013;260:1452-68.
[149] McCarthy M. Study Supports Link between Low Vitamin D and Dementia Risk. BMJ 2014;349:g5049.
[150] Callegari PE, Zurier RB. Botanical Lipids: Potential Role in Modulation of Immunologic Responses and Inflammatory Reactions. Rheum Dis Clin North Am 1991;17:415-25.
[151] Ferrante A, Goh D, Harvey DP, Robinson BS, Hii CS, Bates EJ, et al. Neutrophil Migration Inhibitory Properties of Polyunsaturated Fatty Acids. The Role of Fatty Acid Structure, Metabolism, and Possible Second Messenger Systems. J Clin Invest 1994;93:1063-70.
[152] Devassy JG, Leng S, Gabbs M, Monirujjaman M, Aukema HM. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. Adv Nutr 2016;7:905-16.
[153] Kim HY. Biochemical and Biological Functions of Docosahexaenoic Acid in the Nervous System: Modulation by Ethanol. Chem Phys Lipids 2008;153:34-46.
[154] Cole GM, Lim GP, Yang F, Teter B, Begum A, Ma Q, et al. Prevention of Alzheimer’s Disease: Omega-3 Fatty Acid and Phenolic Anti-oxidant Interventions. Neurobiol Aging 2005;26 Suppl 1:133-6.
[155] De Caterina R, Cybulsky MI, Clinton SK, Gimbrone MAJr., Libby P. The Omega-3 Fatty Acid Docosahexaenoate Reduces Cytokine-induced Expression of Proatherogenic and Proinflammatory Proteins in Human Endothelial Cells. Arterioscler Thromb 1994;14:1829-36.
[156] Simopoulos AP. Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases. J Am Coll Nutr 2002;21:495-505.
[157] Giusto NM, Salvador GA, Castagnet PI, Pasquare SJ, de Boschero MG. Age-Associated Changes in Central Nervous System Glycerolipid Composition and Metabolism. Neurochem Res 2002;27:1513-23.
[158] Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, et al. A Diet Enriched with the Omega-3 Fatty Acid Docosahexaenoic Acid Reduces Amyloid Burden in an Aged Alzheimer Mouse Model. J Neurosci 2005;25:3032-40.
[159] Fotuhi M, Mohassel P, Yaffe K. Fish Consumption, Longchain Omega-3 Fatty Acids and Risk of Cognitive Decline or Alzheimer Disease: A Complex Association. Nat Clin Pract Neurol 2009;5:140-52.
[160] Black MM. Zinc Deficiency and Child Development. Am J Clin Nutr 1998;68:464S-9.
[161] Takeda A. Movement of Zinc and its Functional Significance in the Brain. Brain Res Brain Res Rev 2000;34:137-48.
[162] Hambidge M. Human Zinc Deficiency. J Nutr 2000;130:1344S-9.
[163] Blumberg J. Nutritional Needs of Seniors. J Am Coll Nutr 1997;16:517-23.
[164] Briefel RR, Bialostosky K, Kennedy-Stephenson J, McDowell MA, Ervin RB, Wright JD. Zinc Intake of the U.S. Population: Findings from the Third National Health and Nutrition Examination Survey, 1988-1994. J Nutr 2000;130:1367S-73.
[165] Prasad AS, Fitzgerald JT, Hess JW, Kaplan J, Pelen F, Dardenne M. Zinc Deficiency in Elderly Patients. Nutrition 1993;9:218-24.
[166] Ortega RM, Requejo AM, Andres P, Lopez-Sobaler AM, Quintas ME, Redondo MR, et al. Dietary Intake and Cognitive Function in a Group of Elderly People. Am J Clin Nutr 1997;66:803-9.
[167] Kornfeld R, Kornfeld S. Assembly of Asparagine-linked Oligosaccharides. Ann Rev Biochem 1985;54:631-64.
[168] Denker H-W. Editor’s Note. Acta Anat 1998;161:5.
[169] Henderson AJ, Ollila CA, Kumar A, Borresen EC, Raina K, Agarwal R, et al. Chemopreventive Properties of Dietary Rice Bran: Current Status and Future Prospects. Adv Nutr 2012;3:643-53.
[170] Zarei I, Brown DG, Nealon NJ, Ryan EP. Rice Bran Metabolome Contains Amino Acids, Vitamins and Cofactors, and Phytochemicals with Medicinal and Nutritional Properties. Rice (NY) 2017;10:24.
[171] Kim HS, Kacew S, Lee BM. In Vitro Chemopreventive Effects of Plant Polysaccharides (Aloe barbadensis miller, Lentinus edodes, Ganoderma lucidum and Coriolus versicolor). Carcinogenesis 1999;20:1637-40.
[172] Alavi A, Fraser O, Tarelli E, Bland M, Axford J. An Openlabel Dosing Study to Evaluate the Safety and Effects of a Dietary Plant-derived Polysaccharide Supplement on the N-glycosylation Status of Serum Glycoproteins in Healthy Subjects. Eur J Clin Nutr 2011;65:648-56.
[173] Messier C, Gagnon M, Knott V. Effect of Glucose and Peripheral Glucose Regulation on Memory in the Elderly. Neurobiol Aging 1997;18:297-304.
[174] Messier C. Glucose improvement of Memory: A Review. Eur J Pharmacol 2004;490:33-57.
[175] Nelson ED, Ramberg JE, Best T, Sinnott RA. Neurologic Effects of Exogenous Saccharides: A Review of Controlled Human, Animal, and In Vitro Studies. Nutr Neurosci 2012;15:149-62.
[176] Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T. Sulfated Polysaccharides Increase Plasma Levels of sdf-1 in Monkeys and Mice: Involvement in Mobilization of Stem/Progenitor Cells. Blood 2002;99:44-51.
[177] McDaniel HR, Smith P, McDanial C, Crenshaw R. AMultisite Pilot Survey of Micronutrients in Alzheimer’s Patients. Houston, TX: 2nd Annual Glycomics Medical Conference: Science of Glycobiology; 2006.
[178] Martin A, Stillman J, Miguez MJ, McDaniel HR, Konefal J, Woolger JM, et al. The Effect of Dietary Supplementation on Brain-derived Neurotrophic Factor and Cognitive Functioning in Alzheimer’s Dementia. J Clin Transl Res 2018;3:337-43.
[179] Xie H, Yung WH. Chronic Intermittent Hypoxia-induced Deficits in Synaptic Plasticity and Neurocognitive Functions: A Role for Brain-derived Neurotrophic Factor. Acta Pharmacol Sin 2012;33:5-10.
[180] Meis S, Endres T, Lessmann V. Postsynaptic bdnf Signalling Regulates Long-term Potentiation at Thalamoamygdala Afferents. J Physiol 2012;590:193-208.
[181] Bramham CR, Messaoudi E. Bdnf Function in Adult Synaptic Plasticity: The Synaptic Consolidation Hypothesis. Prog Neurobiol 2005;76:99-125.
[182] Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, et al. Neuroprotective Effects of Brain-derived Neurotrophic Factor in Rodent and Primate Models of Alzheimer’s Disease. Nat Med 2009;15:331-7.
[183] Islam O, Loo TX, Heese K. Brain-derived Neurotrophic Factor (bdnf) has Proliferative Effects on Neural Stem Cells through the Truncated trk-b Receptor, map Kinase, akt, and stat-3 Signaling Pathways. Curr Neurovasc Res 2009;6:42-53.
[184] Schneider LS, Sano M. Current Alzheimer’s Disease Clinical Trials: Methods and Placebo Outcomes. Alzheimers Dement 2009;5:388-97.
[185] Rajan KE, Preethi J, Singh HK. Molecular and Functional Characterization of Bacopa monniera: A Retrospective Review. Evid Based Complement Alternat Med 2015;2015:945217.
[186] Abdul Manap AS, Vijayabalan S, Madhavan P, Chia YY, Arya A, Wong EH, et al. Bacopa monnieri, a Neuroprotective Lead in Alzheimer Disease: A Review on its Properties, Mechanisms of Action, and Preclinical and Clinical Studies. Drug Target Insights 2019;13:1177392819866412.
[187] Massaccesi L, Galliera E, Galimberti D, Fenoglio C, Arcaro M, Goi G, et al. Lag-time in Alzheimer’s Disease Patients: A Potential Plasmatic Oxidative Stress Marker Associated with apoe4 Isoform. Immun Ageing 2019;16:7.
[188] Russo A, Borrelli F, Campisi A, Acquaviva R, Raciti G, Vanella A. Nitric Oxide-related Toxicity in Cultured Astrocytes: Effect of Bacopa monniera. Life Sci 2003;73:1517-26.
[189] Sierpina VS, Wollschlaeger B, Blumenthal M. Ginkgo biloba. Am Fam Physician 2003;68:923-6.
[190] Luo Y. Ginkgo biloba Neuroprotection: Therapeutic Implications in Alzheimer’s Disease. J Alzheimers Dis 2001;3:401-7.
[191] Kanowski S, Herrmann WM, Stephan K, Wierich W, Horr R. Proof of Efficacy of the Ginkgo biloba Special Extract egb 761 in Outpatients Suffering from Mild to Moderate Primary Degenerative Dementia of the Alzheimer Type or Multi-infarct Dementia. Pharmacopsychiatry 1996;29:47-56.
[192] Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF. A Placebo-controlled, Double-blind, Randomized Trial of an Extract of Ginkgo biloba for Dementia. North American egb Study Group. JAMA 1997;278:1327-32.
[193] Maurer K, Ihl R, Dierks T, Frolich L. Clinical Efficacy of Ginkgo biloba Special Extract egb 761 in Dementia of the Alzheimer Type. J Psychiatr Res 1997;31:645-55.
[194] Oken BS, Storzbach DM, Kaye JA. The Efficacy of Ginkgo biloba on Cognitive Function in Alzheimer Disease. Arch Neurol 1998;55:1409-15.
[195] Ernst E. The Risk-benefit Profile of Commonly Used Herbal Therapies: Ginkgo, St. John’s Wort, Ginseng, Echinacea, Saw Palmetto, and Kava. Ann Intern Med 2002;136:42-53.
[196] Xiang YZ, Shang HC, Gao XM, Zhang BL. A Comparison of the Ancient Use of Ginseng in Traditional Chinese Medicine with Modern Pharmacological Experiments and Clinical Trials. Phytother Res 2008;22:851-8.
[197] Smith I, Williamson EM, Putnam S, Farrimond J, Whalley BJ. Effects and Mechanisms of Ginseng and Ginsenosides on Cognition. Nutr Rev 2014;72:319-33.
[198] Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. Therapeutic Potential of Culinary-medicinal Mushrooms for the Management of Neurodegenerative Diseases: Diversity, Metabolite, and Mechanism. Crit Rev Biotechnol 2015;35:355-68.
[199] Li IC, Lee LY, Tzeng TT, Chen WP, Chen YP, Shiao YJ, et al. Neurohealth Properties of Hericium erinaceus Mycelia Enriched with Erinacines. Behav Neurol 2018;2018:5802634.
[200] Mori K, Obara Y, Moriya T, Inatomi S, Nakahata N. Effects of Hericium erinaceus on Amyloid Beta(25-35) Peptideinduced Learning and Memory Deficits in Mice. Biomed Res 2011;32:67-72.
[201] Mori K, Obara Y, Hirota M, Azumi Y, Kinugasa S, Inatomi S, et al. Nerve Growth Factor-inducing Activity of Hericium erinaceus in 1321n1 Human Astrocytoma Cells. Biol Pharm Bull 2008;31:1727-32.
[202] Cheng YZ, Chen LJ, Lee WJ, Chen MF, Lin HJ, Cheng JT. Increase of Myocardial Performance by Rhodiolaethanol Extract in Diabetic Rats. J Ethnopharmacol 2012;144:234-39.
[203] Nabavi SF, Braidy N, Orhan IE, Badiee A, Daglia M, Nabavi SM. Rhodiola rosea L. and Alzheimer’s Disease: From Farm to Pharmacy. Phytother Res 2016;30:532-9.
[204] Jowko E, Sadowski J, Dlugolecka B, Gierczuk D, Opaszowski B, Cieslinski I. Effects of Rhodiola rosea Supplementation on Mental Performance, Physical Capacity, and Oxidative Stress Biomarkers in Healthy Men. J Sport Health Sci 2018;7:473-80.
[205] Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): Traditional Use, Chemical Composition, Pharmacology and Clinical Efficacy. Phytomedicine 2010;17:481-93.
[206] Yarza R, Vela S, Solas M, Ramirez MJ. C-jun N-terminal kinase (jnk) Signaling as a Therapeutic Target for Alzheimer’s Disease. Front Pharmacol 2015;6:321.
[207] Small B. Culinary Herbs. 2nd ed. Ottawa: NRC Research Press; 2006.
[208] Ganena AK, Hense H, Junior AS, de Souza SM. Rosemary (Rosmarinus officinalis) a Study of the Composition, Antioxidant and Antimicrobial Activities of Extracts Obtained with Supercritical Carbon Dioxide. Cienc Tecnol Aliment Campinas 2008;28:463-9.
[209] Kim SJ, Kim JS, Cho HS, Lee HJ, Kim SY, Kim S, et al. Carnosol, a Component of Rosemary (Rosmarinus officinalis L.) Protects Nigral Dopaminergic Neuronal Cells. Neuroreport 2006;17:1729-33.
[210] Diego MA, Jones NA, Field T, Hernandez-Reif M, Schanberg S, Kuhn C, et al. Aromatherapy Positively Affects Mood, eeg Patterns of Alertness and Math Computations. Int J Neurosci 1998;96:217-24.
[211] Yerkes RM, Dodson JD. The Relation of Strength of Stimulus to Rapidity of Habit‐formation. J Comp Neurol Psychol 1908;18:459-82.
[212] Christodoulou E, Kadoglou NP, Kostomitsopoulos N, Valsami G. Saffron: A Natural Product with Potential Pharmaceutical Applications. J Pharm Pharmacol 2015;67:1634-49.
[213] Ghahghaei A, Bathaie SZ, Kheirkhah H, Bahraminejad E. The Protective Effect of Crocin on the Amyloid Fibril Formation of Abeta42 peptide In Vitro. Cell Mol Biol Lett 2013;18:328-39.
[214] Broadhead GK, Chang A, Grigg J, McCluskey P. Efficacy and Safety of Saffron Supplementation: Current Clinical Findings. Crit Rev Food Sci Nutr 2016;56:2767-76.
[215] Ebrahim-Habibi MB, Amininasab M, Ebrahim-Habibi A, Sabbaghian M, Nemat-Gorgani M. Fibrillation of Alphalactalbumin: Effect of Crocin and Safranal, Two Natural Small Molecules from Crocus Sativus. Biopolymers 2010;93:854-65.
[216] Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, et al. Inhibitory Activity on Amyloid-beta Aggregation and Antioxidant Properties of Crocus sativus Stigmas Extract and its Crocin Constituents. J Agric Food Chem 2006;54:8762-8.
[217] Uddin MS, Al Mamun A, Kabir MT, Jakaria M, Mathew B, Barreto GE, et al. Nootropic and Anti-alzheimer’s Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer’s Neuropathology. Mol Neurobiol 2019;56:4925-44.
[218] Geromichalos GD, Lamari FN, Papandreou MA, Trafalis DT, Margarity M, Papageorgiou A, et al. Saffron as a Source of Novel Acetylcholinesterase Inhibitors: Molecular Docking and In Vitro Enzymatic Studies. JAgric Food Chem 2012;60:6131-8.
[219] Akhondzadeh S, Fallah-Pour H, Afkham K, Jamshidi AH, Khalighi-Cigaroudi F. Comparison of Crocus sativus L. and Imipramine in the Treatment of Mild to Moderate Depression: A Pilot Double-blind Randomized Trial isrctn45683816.. BMC Complement Altern Med 2004;4:12.
[220] Akhondzadeh S, Tahmacebi-Pour N, Noorbala AA, Amini H, Fallah-Pour H, Jamshidi AH, et al. Crocus sativus L. in the Treatment of Mild to Moderate Depression: ADouble-blind, Randomized and Placebo-controlled Trial. Phytother Res 2005;19:148-51.
[221] Noorbala AA, Akhondzadeh S, Tahmacebi-Pour N, Jamshidi AH. Hydro-Alcoholic Extract of Crocus sativus L. Versus Fluoxetine in the Treatment of Mild to Moderate Depression: A Double-blind, Randomized Pilot Trial. J Ethnopharmacol 2005;97:281-4.
[222] Avgerinos KI, Vrysis C, Chaitidis N, Kolotsiou K, Myserlis PG, Kapogiannis D. Effects of Saffron (Crocus sativus L.) on Cognitive Function. A Systematic Review of Rcts. Neurol Sci 2020;41:2747-54.
[223] Wang H, Nair MG, Strasburg GM, Chang YC, Booren AM, Gray JI, et al. Antioxidant and Antiinflammatory Activities of Anthocyanins and their Aglycon, Cyanidin, from Tart Cherries. J Nat Prod 1999;62:802.
[224] Kim DO, Heo HJ, Kim YJ, Yang HS, Lee CY. Sweet and Sour Cherry Phenolics and their Protective Effects on Neuronal Cells. J Agric Food Chem 2005;53:9921-7.
[225] Bell PG, Walshe IH, Davison GW, Stevenson E, Howatson G. Montmorency Cherries Reduce the Oxidative Stress and Inflammatory Responses to Repeated Days High-intensity Stochastic Cycling. Nutrients 2014;6:829-43.
[226] Seymour EM, Warber S, Kirakosyan A, Noon K, GillespieB, Uhley V, et al. Anthocyanin Pharmacokinetics and Dosedependent Plasma Antioxidant Pharmacodynamics Following Whole Tart Cherry Intake in Healthy Humans. J Funct Foods 2014;11:1-7.
[227] Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP. The Neuroprotective Potential of Flavonoids: A Multiplicity of Effects. Genes Nutr 2008;3:115-26.
[228] Farkas E, de Wilde MC, Kiliaan AJ, Luiten PG. Chronic Cerebral Hypoperfusion-related Neuropathologic Changes and Compromised Cognitive Status: Window of Treatment. Drugs Today (Barc) 2002;38:365-76.
[229] Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century. Curr Neuropharmacol 2013;11:338-78.
[230] Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of Curcumin, a Component of Golden Spice, and its Miraculous Biological Activities. Clin Exp Pharmacol Physiol 2012;39:283-99.
[231] Hewlings SJ, Kalman DS. Curcumin: A Review of its Effects on Human Health. Foods 2017;6:92.
[232] Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of Curcumin: Problems and Promises. Mol Pharm 2007;4:807-18.
[233] Voulgaropoulou SD, van Amelsvoort T, Prickaerts J, Vingerhoets C. The Effect of Curcumin on Cognition in Alzheimer’s Disease and Healthy Aging: A Systematic Review of Pre-clinical and Clinical Studies. Brain Res 2019;1725:146476.
[234] Sarker MR, Franks SF. Efficacy of Curcumin for Ageassociated Cognitive Decline: A Narrative Review of Preclinical and Clinical Studies. Geroscience 2018;40:73-95.
[235] D’Cunha NM, Seddon N, Mellor DD, Georgousopoulou EN, McKune AJ, Panagiotakos DB, et al. Curcumin for Cognition: Is it just Hype, Based on Current Data? Adv Nutr 2019;10:179-81.
[236] Potter PE. Curcumin: A Natural Substance with Potential Efficacy in Alzheimer’s Disease. J Exp Pharmacol 2013;5:23-31.
[237] Tohda C, Urano T, Umezaki M, Nemere I, Kuboyama T. Diosgenin is an Exogenous Activator of 1,25d(3)-marrs/ pdia3/erp57 and Improves Alzheimer’s Disease Pathologies in 5xfad Mice. Sci Rep 2012;2:535.
[238] Tohda C, Lee YA, Goto Y, Nemere I. Corrigendum: Diosgenin-induced Cognitive Enhancement in Normal Mice is Mediated by 1,25d3-marrs. Sci Rep 2015;5:12660.
[239] Mukherjee PK, Banerjee S, Biswas S, Das B, Kar A, Katiyar CK. Withania somnifera (L.) Dunal modern Perspectives of an Ancient Rasayana from Ayurveda. J Ethnopharmacol 2021;264:113157.
[240] Ng QX, Loke W, Foo NX, Tan WJ, Chan HW, Lim DY, et al. A Systematic Review of the Clinical Use of Withania somnifera (Ashwagandha) to Ameliorate Cognitive Dysfunction. Phytother Res 2020;34:583-590.
[241] Singh N, Shreshtha AK, Thakur MS, Patra S. Xanthine Scaffold: Scope and Potential in Drug Development. Heliyon 2018;4:e00829.
[242] Rosso A, Mossey J, Lippa CF. Caffeine: Neuroprotective Functions in Cognition and Alzheimer’s Disease. Am J Alzheimers Dis Other Demen 2008;23:417-22.
[243] Dixit A, Goyal A, Thawani R, Vaney N. Effect of Caffeine on Information Processing: Evidence from Stroop Task. Indian J Psychol Med 2012;34:218-22.
[244] Koppelstaetter F, Poeppel TD, Siedentopf CM, Ischebeck A, Kolbitsch C, Mottaghy FM, et al. Caffeine and Cognition in Functional Magnetic Resonance Imaging. J Alzheimers Dis 2010;20 Suppl 1:S71-84.
[245] Brice CF, Smith AP. Effects of Caffeine on Mood and Performance: A Study of Realistic Consumption. Psychopharmacology (Berl) 2002;164:188-92.
[246] Adan A, Serra-Grabulosa JM. Effects of Caffeine and Glucose, Alone and Combined, on Cognitive Performance. Hum Psychopharmacol 2010;25:310-7.
[247] Rogers PJ, Dernoncourt C. Regular Caffeine Consumption: A Balance of Adverse and Beneficial Effects for Mood and Psychomotor Performance. Pharmacol Biochem Behav 1998;59:1039-45.
[248] Glade MJ. Caffeine-not Just a Stimulant. Nutrition 2010;26:932-8.
[249] Hoshi Y, Tamura M. Detection of Dynamic Changes in Cerebral Oxygenation Coupled to Neuronal Function during Mental Work in Man. Neurosci Lett 1993;150:5-8.
[250] Stuss DT, Benson DF. Neuropsychological Studies of the Frontal Lobes. Psychol Bull 1984;95:3-28.
[251] Hindmarch I, Quinlan PT, Moore KL, Parkin C. The Effects of Black Tea and Other Beverages on Aspects of Cognition and Psychomotor Performance. Psychopharmacology (Berl) 1998;139:230-8.
[252] Abdou AM, Higashiguchi S, Horie K, Kim M, Hatta H, Yokogoshi H. Relaxation and Immunity Enhancement Effects of Gamma-aminobutyric Acid (Gaba) Administration in Humans. Biofactors 2006;26:201-8.
[253] Kelly SP, Gomez-Ramirez M, Montesi JL, Foxe JJ. L-theanine and Caffeine in Combination Affect Human Cognition as Evidenced by Oscillatory Alpha-band Activity and Attention Task Performance. J Nutr 2008;138:1572S-7.
[254] Einother SJ, Martens VE, Rycroft JA, De Bruin EA. L-theanine and Caffeine Improve Task Switching but not Intersensory Attention or Subjective Alertness. Appetite 2010;54:406-9.
[255] Martinez-Pinilla E, Onatibia-Astibia A, Franco R. The Relevance of Theobromine for the Beneficial Effects of Cocoa Consumption. Front Pharmacol 2015;6:30.
[256] Mumford GK, Evans SM, Kaminski BJ, Preston KL, Sannerud CA, Silverman K, et al. Discriminative Stimulus and Subjective Effects of Theobromine and Caffeine in Humans. Psychopharmacology (Berl) 1994;115:1-8.
[257] Weller J, Budson A. Current Understanding of Alzheimer’s Disease Diagnosis and Treatment. F1000Res 2018;7:Faculty Rev-1161.