Scope and challenges of machine learning-based diagnosis and prognosis in clinical dentistry: A literature review

Background: Machine learning has emerged as a branch of artificial intelligence dealing with the analysis of large amounts of data. The applications of machine learning algorithms have also expanded to health care, including Dentistry. Recent advances in this field point to future improvements in diagnostic techniques and the prognosis of various diseases of the teeth and other maxillofacial structures.
Aim: The aim of this literature review is to describe the basis for machine learning being applied to different dental sub-fields in recent years, to identify typical algorithms used in the studies, and to summarize the scope and challenges of using these techniques in dental clinical practice.
Relevance for patients: The proficiency of emerging technologies that have begun to show encouraging results in the diagnosis and prognosis of oral diseases can improve the precision in the selection of treatment for patients. It is necessary to understand the challenges associated with using these tools in order to effectively use them in dental services and ensure a higher quality of care for patients.
[1] Turing IB. Computing Machinery and Intelligence. Am Turing Mind 1950;59:433.
[2] Tegmark M. Life 3.0: Being Human in the Age of Artificial Intelligence. United States: Knopf; 2017.
[3] Ahuja AS. The Impact of Artificial Intelligence in Medicine on the Future Role of the Physician. PeerJ 2019;7:e7702.
[4] Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The Use and Performance of Artificial Intelligence Applications in Dental and Maxillofacial Radiology: A Systematic Review. Dentomaxillofac Radiol 2020;49:20190107.
[5] Collen MF, Shortliffe EH. The creation of a new discipline. In: The History of Medical Informatics in the United States. London: Springer; 2015. p. 75-120.
[6] Park WJ, Park JB. History and Application of Artificial Neural Networks in Dentistry. Eur J Dent 2018;12:594.
[7] Ramesh AN, Kambhampati C, Monson JR, Drew PJ. Artificial Intelligence in Medicine. Ann R Coll Surg Engl 2004;86:334.
[8] Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med 2019;380:1347-58.
[9] Wiens J, Campbell WN, Franklin ES, Guttag JV, Horvitz E. Learning data-driven patient risk str. Jpegication models for clostridium difficile. Vol. 1. In: Open Forum Infectious Diseases. Oxford: Oxford University Press; 2014.
[10] Henry KE, Hager DN, Pronovost PJ, Saria S. A Targeted Real-time Early Warning Score (TREWScore) for Septic Shock. Sci Transl Med 2015;7:299.
[11] Colubri A, Silver T, Fradet T, Retzepi K, Fry B, Sabeti P. Transforming Clinical Data into Actionable Prognosis Models: Machine-learning Framework and Fielddeployable App to Predict Outcome of Ebola Patients. PLoS Negl Trop Dis 2016;10:e0004549.
[12] Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016;316:2402-10.
[13] Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine Learning for Prediction of All-cause Mortality in Patients with Suspected Coronary Artery Disease: A 5-year Multicentre Prospective Registry Analysis. Eur Heart J 2017;38:500-7.
[14] Kehl KL, Elmarakeby H, Nishino M, Van Allen EM, Lepisto EM, Hassett MJ, et al. Assessment of Deep Natural Language Processing in Ascertaining Oncologic Outcomes from Radiology Reports. JAMA Oncol 2019;5:1421-9.
[15] Morgan DJ, Bame B, Zimand P, Dooley P, Thom KA, Harris AD, et al. Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions. JAMA Netw 2019;2:e190348.
[16] Leonardi RM, Giordano D, Maiorana F, Greco M. Accuracy of Cephalometric Landmarks on Monitordisplayed Radiographs with and Without Image Emboss Enhancement. Eur J Orthod 2010;32:242-7.
[17] Xie X, Wang L, Wang A. Artificial Neural Network Modeling for Deciding if Extractions Are Necessary Prior to Orthodontic Treatment. Angle Orthod 2010;80:262-6.
[18] Moghimi S, Talebi M, Parisay I. Design and Implementation of a Hybrid Genetic Algorithm and Artificial Neural Network System for Predicting the Sizes of Unerupted Canines and Premolars. Eur J Orthod 2012;34:480-6.
[19] Jung SK, Kim TW. New Approach for the Diagnosis of Extractions with Neural Network Machine Learning. Am J Orthod Dentofac Orthop 2016;149:127-33.
[20] Wang X, Cai B, Cao Y, Zhou C, Yang L, Liu R, et al. Objective Method for Evaluating Orthodontic Treatment from the Lay Perspective: An Eye-tracking Study. Am J Orthod Dentofac Orthop 2016;150:601-10.
[21] Patcas R, Bernini DA, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying Artificial Intelligence to Assess the Impact of Orthognathic Treatment on Facial Attractiveness and Estimated Age. Int J Oral Maxillofac Surg 2019;48:77-83.
[22] Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial Intelligence in Orthodontics. J Orofac Orthop Fortschritte Kieferorthop 2020;81:52-68.
[23] Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, et al. Automatic Detection and Classification of Radiolucent Lesions in the Mandible on Panoramic Radiographs Using a Deep Learning Object Detection Technique. Oral Surg Oral Med Oral Pathol Oral Radiol 2019;128:424-30.
[24] Ehtesham H, Safdari R, Mansourian A, Tahmasebian S, Mohammadzadeh N, Pourshahidi S. Developing a New Intelligent System for the Diagnosis of Oral Medicine with Case‐based Reasoning Approach. Oral Dis 2019;25:1555-63.
[25] Tamaki Y, Nomura Y, Katsumura S, Okada A, Yamada H, Tsuge S, et al. Construction of a Dental Caries Prediction Model by Data Mining. J Oral Sci 2009;51:61-8.
[26] Araki K, Matsuda Y, Seki K, Okano T. Effect of Computer Assistance on Observer Performance of Approximal Caries Diagnosis Using Intraoral Digital Radiography. Clin Oral Investig 2010;14:319-25.
[27] Lee JH, Kim DH, Jeong SN, Choi SH. Detection and Diagnosis of Dental Caries Using a Deep Learningbased Convolutional Neural Network Algorithm. J Dent 2018;77:106-11.
[28] Hung M, Voss MW, Rosales MN, Li W, Su W, Xu J, et al. Application of Machine Learning for Diagnostic Prediction of Root Caries. Gerodontology 2019;36:395-404.
[29] Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, et al. Detecting Caries Lesions of Different Radiographic Extension on Bitewings Using Deep Learning. J Dent 2020;100:103425.
[30] Geetha V, Aprameya KS, Hinduja DM. Dental Caries Diagnosis in Digital Radiographs Using Back-propagation Neural Network. Health Inf Sci Syst 2020;8:1-4.
[31] Liu L, Wu W, Zhang SY, Zhang KQ, Li J, Liu Y, et al. Dental Caries Prediction Based on a Survey of the Oral Health Epidemiology among the Geriatric Residents of Liaoning, China. Biomed Res Int 2020;2020:1-12.
[32] Schwendicke F, Elhennawy K, Paris S, Friebertshäuser P, Krois J. Deep Learning for Caries Lesion Detection in Near-infrared Light Transillumination Images: A Pilot Study. J Dent 2020;92:103260.
[33] Tandon D, Rajawat J. Present and Future of Artificial Intelligence in Dentistry. J Oral Biol Craniofac Res 2020;10:391-6.
[34] Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, Application, and Performance of Artificial Intelligence in Dentistry-a Systematic Review. J Dent Sci 2020;16:508-22.
[35] Schwendicke F, Golla T, Dreher M, Krois J. Convolutional Neural Networks for Dental Image Diagnostics: A Scoping Review. J Dent 2019;91:103226.
[36] Jordan MI, Mitchell TM. Machine Learning: Trends, Perspectives, and Prospects. Science 2015;349:255-60.
[37] Michie D, Spiegelhalter DJ, Taylor CC. Machine Learning. Neural Stat Class 1994;13:1-298.
[38] Alpaydin E. Introduction to Machine Learning. United States: MIT Press; 2020.
[39] Wiens J, Shenoy ES. Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare Epidemiology. Clin Infect Dis 2018;66:149-53.
[40] Ngiam KY, Khor W. Big Data and Machine Learning Algorithms for Health-care Delivery. Lancet Oncol 2019;20:e262-73.
[41] Leite AF, Vasconcelos KD, Willems H, Jacobs R. Radiomics and Machine Learning in Oral Healthcare. Proteomics Clin Appl 2020;14:1900040.
[42] Papantonopoulos G, Takahashi K, Bountis T, Loos BG. Artificial Neural Networks for the Diagnosis of Aggressive Periodontitis Trained by Immunologic Parameters. PLoS One 2014;9:e89757.
[43] Yilmaz E, Kayikcioglu T, Kayipmaz S. Computer-aided Diagnosis of Periapical Cyst and Keratocystic Odontogenic Tumor on Cone Beam Computed Tomography. Comput Methods Prog Biomed 2017;146:91-100.
[44] Lee JH, Kim DH, Jeong SN. Diagnosis of Cystic Lesions Using Panoramic and Cone Beam Computed Tomographic Images Based on Deep Learning Neural Network. Oral Dis 2020;26:152-8.
[45] Lee JH, Jeong SN. Efficacy of Deep Convolutional Neural Network Algorithm for the Identification and Classification of Dental Implant Systems, Using Panoramic and Periapical Radiographs: A Pilot Study. Medicine 2020;99:e20787.
[46] Zhu X, Goldberg AB. Introduction to Semi-supervised Learning. Synthe Lectures Artif Intel Mach Learn 2009;3:1-30.
[47] Deo RC. Machine Learning in Medicine. Circulation 2015;132:1920-30.
[48] Merdietio Boedi R, Banar N, De Tobel J, Bertels J, Vandermeulen D, Thevissen PW. Effect of Lower Third Molar Segmentations on Automated Tooth Development Staging Using a Convolutional Neural Network. J Forensic Sci 2020;65:481-6.
[49] Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özy Özy TA. Evaluation of Artificial Intelligence for Detecting Periapical Pathosis on Coneg Using a Convolutional Neural NeInt Endod J 2020;53:680-9.
[50] Vranckx M, Van Gerven A, Willems H, Vandemeulebroucke A, Ferreira Leite A, Politis C, et al. Artificial Intelligence (AI)-Driven Molar Angulation Measurements to Predict Third Molar Eruption on Panoramic Radiographs. Int J Environ Res Public Health 2020;17:3716.
[51] Welch ML, McIntosh C, Traverso A, Wee L, Purdie TG, Dekker A, et al. External Validation and Transfer Learning of Convolutional Neural Networks for Computed Tomography Dental Artifact Classification. Phys Med Biol 2020;65:035017.
[52] Chen S, Wang L, Li G, Wu TH, Diachina S, Tejera B, et al. Machine Learning in Orthodontics: Introducing a 3D Autosegmentation and Auto-landmark Finder of CBCT Images to Assess Maxillary Constriction in Unilateral Impacted Canine Patients. Angle Orthod 2020;90:77-84.
[53] Banumathi A, Raju S, Abhaikumar V. Diagnosis of Dental Deformities in Cephalometry Images Using Support Vector Machine. J Med Syst 2011;35:113-9.
[54] Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A Deep Learning Approach to Automatic Teeth Detection and Numbering Based on Object Detection in Dental Periapical Films. Sci Rep 2019;9:1.
[55] Kök H, Acilar AM, İzgi MS. Usage and Comparison of Artificial Intelligence Algorithms for Determination of Growth and Development by Cervical Vertebrae Stages in Orthodontics. Prog Orthod 2019;20:41.
[56] Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, et al. Tooth Detection and Numbering in Panoramic Radiographs Using Convolutional Neural Networks. Dentomaxillofac Radiol 2019;48:20180051.
[57] Kuwada C, Ariji Y, Fukuda M, Kise Y, Fujita H, Katsumata A, et al. Deep Learning Systems for Detecting and Classifying the Presence of Impacted Supernumerary Teeth in the Maxillary Incisor Region on Panoramic Radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol 2020;130:464-9.
[58] Sidey-Gibbons JA, Sidey-Gibbons CJ. Machine Learning in Medicine: A Practical Introduction. BMC Med Res Methodol 2019;19:64.
[59] Radakovich N, Nagy M, Nazha A. Machine Learning in Haematological Malignancies. Lancet Haematol 2020;7:e541-50.
[60] Kotsiantis SB, Zaharakis I, Pintelas P. Supervised Machine Learning: A Review of Classification Techniques. Emerg Artif Intel Appl Comput Eng 2007;160:3-24.
[61] Patcas R, Timofte R, Volokitin A, Agustsson E, Eliades T, Eichenberger M, et al. Facial Attractiveness of Cleft Patients: A Direct Comparison Between Artificialintelligence-based Scoring and Conventional Rater Groups. Eur J Orthod 2019;41:428-33.
[62] Hwang JJ, Jung YH, Cho BH, Heo MS. An Overview of Deep Learning in the Field of Dentistry. Imaging Sci Dent 2019;49:1-7.
[63] Kebschull M, Guarnieri P, Demmer RT, Boulesteix AL, Pavlidis P, Papapanou PN. Molecular Differences Between Chronic and Aggressive Periodontitis. J Dent Res 2013;92:1081-8.
[64] Ozden FO, Ozgonenel O, Ozden B, Aydogdu A. Diagnosis of Periodontal Diseases Using Different Classification Algorithms: A Preliminary Study. Niger J Clin Pract 2015;18:416-21.
[65] Feres M, Louzoun Y, Haber S, Faveri M, Figueiredo LC, Levin L. Support Vector Machine‐based Differentiation Between Aggressive and Chronic Periodontitis Using Microbial Profiles. Int Dent J 2018;68:39-46.
[66] Chang HJ, Lee SJ, Yong TH, Shin NY, Jang BG, Kim JE, et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis. Sci Rep 2020;10:1-8.
[67] Shimpi N, McRoy S, Zhao H, Wu M, Acharya A. Development of a Periodontitis Risk Assessment Model for Primary Care Providers in an Interdisciplinary Setting. Technol Health Care 2020;28:143-54.
[68] Breslow LA, Aha DW. Simplifying Decision Trees: A Survey. Know Eng Rev 1997;12:1-40.
[69] Elomaa T. The Biases of decision tree pruning strategies. In: International Symposium on Intelligent Data Analysis. Berlin, Heidelberg: Springer; 1999. p. 63-74.
[70] Punitha S, Al-Turjman F, Stephan T. An Automated Breast Cancer Diagnosis Using Feature Selection and Parameter Optimization in ANN. Comput Electr Eng 2021;90:106958.
[71] Kwon O, Yong TH, Kang SR, Kim JE, Huh KH, Heo MS, et al. Automatic Diagnosis for Cysts and Tumors of Both Jaws on Panoramic Radiographs Using a Deep Convolution Neural Network. Dentomaxillofac Radiol 2020;49:20200185.
[72] Kononenko I. Estimating attributes: Analysis and extensions of RELIEF. In: European Conference on Machine Learning. Berlin, Heidelberg: Springer; 1994. p. 171-82.
[73] Neville BW, Damm DD, Allen CM, Chi AC. Color Atlas of Oral and Maxillofacial Diseases-E-Book. Netherlands: Elsevier Health Sciences; 2018.
[74] Kats L, Vered M, Blumer S, Kats E. Neural Network Detection and Segmentation of Mental Foramen in Panoramic Imaging. J Clin Pediatr Dent 2020;44:168-73.
[75] Lee JH, Han SS, Kim YH, Lee C, Kim I. Application of a Fully Deep Convolutional Neural Network to the Automation of Tooth Segmentation on Panoramic Radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol 2020;129:635-42.
[76] Welch ML, McIntosh C, Purdie TG, Wee L, Traverso A, Dekker A, et al. Automatic Classification of Dental Artifact Status for Efficient Image Veracity Checks: Effects of Image Resolution and Convolutional Neural Network Depth. Phys Med Biol 2020;65:015005.
[77] Kuwana R, Ariji Y, Fukuda M, Kise Y, Nozawa M, Kuwada C, et al. Performance of Deep Learning Object Detection Technology in the Detection and Diagnosis of Maxillary Sinus Lesions on Panoramic Radiographs. Dentomaxillofac Radiol 2021;50:20200171.
[78] Stehrer R, Hingsammer L, Staudigl C, Hunger S, Malek M, Jacob M, et al. Machine Learning Based Prediction of Perioperative Blood Loss in Orthognathic Surgery. J Craniomaxillofac Surg 2019;47:1676-81.
[79] Choi HI, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH, et al. Artificial Intelligent Model with Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery. J Craniomaxillofac Surg 2019;30:1986-9.
[80] Miki Y, Muramatsu C, Hayashi T, Zhou X, Hara T, Katsumata A, et al. Classification of Teeth in Cone-beam CT Using Deep Convolutional Neural Network. Comput Biol Med 2017;80:24-9.
[81] Štepanovský M, Ibrová A, Buk Z, Velemínská J. Novel Age Estimation Model Based on Development of Permanent Teeth Compared with Classical Approach and Other Modern Data Mining Methods. Forensic Sci Int 2017;279:72-82.
[82] De Tobel J, Radesh P, Vandermeulen D, Thevissen PW. An Automated Technique to Stage Lower Third Molar Development on Panoramic Radiographs for Age Estimation: A Pilot Study. J Forensic Odontostomatol 2017;35:42.
[83] Fan F, Ke W, Wu W, Tian X, Lyu T, Liu Y, et al. Automatic Human Identification from Panoramic Dental Radiographs Using the Convolutional Neural Network. Forensic Sci Int 2020;314:110416.
[84] Niño-Sandoval TC, Pérez SV, González FA, Jaque RA, Infante-Contreras C. Use of Automated Learning Techniques for Predicting Mandibular Morphology in Skeletal Class I, II and III. Forensic Sci Int 2017;281:187- e1.
[85] Saghiri MA, Asgar K, Boukani KK, Lotfi M, Aghili H, Delvarani A, et al. ANew Approach for Locating the Minor Apical Foramen Using an Artificial Neural Network. Int Endod J 2012;45:257-65.
[86] Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asgar K. The Reliability of Artificial Neural Network in Locating Minor Apical Foramen: A Cadaver Study. J Endod 2012;38:1130-4.
[87] Kositbowornchai S, Plermkamon S, Tangkosol T. Performance of an Artificial Neural Network for Vertical Root Fracture Detection: An Ex Vivo Study. Dent Traumatol 2013;29:151-5.
[88] Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A Deep-learning Artificial Intelligence System for Assessment of Root Morphology of the Mandibular First Molar on Panoramic Radiography. Dentomaxillofac Radiol 2019;48:20180218.
[89] Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, et al. Evaluation of an Artificial Intelligence System for Detecting Vertical Root Fracture on Panoramic Radiography. Oral Radiol 2019;36:337-43.
[90] Schwendicke F, Rossi JG, Göstemeyer G, Elhennawy K, Cantu AG, Gaudin R, et al. Cost-effectiveness of Artificial Intelligence for Proximal Caries Detection. J Dent Res 2020;100:369-76.
[91] Drummond AM, Ferreira EF, Gomes VE, Marcenes W. Inequality of Experience of Dental Caries Between Different Ethnic Groups of Brazilians Aged 15 to 19 Years. PLoS One 2015;10:e0145553.
[92] Shackleton N, Broadbent JM, Thornley S, Milne BJ, Crengle S, Exeter DJ. Inequalities in Dental Caries Experience Among 4‐year‐old New Zealand Children. Community Dent Oral Epidemiol 2018;46:288-96.
[93] Nogueira JS, Pereira AC, Frias AC, Ambrosano GM, Cortellazzi KL, Guerra LM, et al. Social Capital and Factors Associated with the Caries Experience in Adults-a Population-Based Study in Brazil. Braz Oral Res 2019;33:e118.
[94] Cheng C, Cheng X, Dai N, Jiang X, Sun Y, Li W. Prediction of Facial Deformation After Complete Denture Prosthesis Using BP Neural Network. Comput Biol Med 2015;66:103-12.
[95] Raith S, Vogel EP, Anees N, Keul C, Güth JF, Edelhoff D, et al. Artificial Neural Networks as a Powerful Numerical Tool to Classify Specific Features of a Tooth Based on 3D Scan Data. Comput Biol Med 2017;80:65-76.
[96] Wei J, Peng M, Li Q, Wang Y. Evaluation of a Novel Computer Color Matching System Based on the Improved Back‐propagation Neural Network Model. J Prosthodont 2018;27:775-83.
[97] Abdalla-Aslan R, Yeshua T, Kabla D, Leichter I, Nadler C. An Artificial Intelligence System Using Machine-learning for Automatic Detection and Classification of Dental Restorations in Panoramic Radiography. Oral Surg Oral Med Oral Pathol Oral Radiol 2020;130:593-602.
[98] Yamaguchi S, Lee C, Karaer O, Ban S, Mine A, Imazato S. Predicting the Debonding of CAD/CAM Composite Resin Crowns with AI. J Dent Res 2019;98:1234-8.
[99] Cui Q, Chen Q, Liu P, Liu D, Wen Z. Clinical Decision Support Model for Tooth Extraction Therapy Derived from Electronic Dental Records. J Prosthet Dent 2020;126:83-90.
[100] Hadj Saïd M, Le Roux MK, Catherine JH, Lan R. Development of an Artificial Intelligence Model to Identify a Dental Implant from a Radiograph. Int J Oral Maxillofac Implants 2020;35:1077-82.
[101] Papantonopoulos G, Gogos C, Housos E, Bountis T, Loos BG. Prediction of Individual Implant Bone Levels and the Existence of Implant “Phenotypes”. Clin Oral Implants Res 2017;28:823-32.
[102] Schwendicke F, Krois J. Better Reporting of Studies on Artificial Intelligence: CONSORT-AI and Beyond. J Dent Res 2021;100:677-80.
[103] Bellazzi R, Ferrazzi F, Sacchi L. Predictive Data Mining in Clinical Medicine: A Focus on Selected Methods and Applications. Wiley Interdiscip Rev Data Min Know Discov 2011;1:416-30.
[104] Blum AL, Langley P. Selection of Relevant Features and Examples in Machine Learning. Artif Intel 1997;97:245-71.
[105] Bloedorn E, Michalsi RS. Data-driven Constructive Induction. IEEE Intel Sys Appl 1998;13:30-7.
[106] Park SH, Han K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology 2018;286:800-9.
[107] Vayena E, Blasimme A, Cohen IG. Machine Learning in Medicine: Addressing Ethical Challenges. PLoS Med 2018;15:e1002689.
[108] Cabitza F, Rasoini R, Gensini GF. Unintended Consequences of Machine Learning in Medicine. JAMA 2017;318:517-8.
[109] Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and Elaboration. Ann Intern Med 2015;162:W1-73.
[110] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. J Artif Intell Res 2002;16:321-57.
[111] López V, Fernández A, Moreno-Torres JG, Herrera F. Analysis of Preprocessing vs. Cost-sensitive Learning for Imbalanced Classification. Open Problems on Intrinsic Data Characteristics. Expert Syst Appl 2012;39:6585-608.
[112] Huang C, Li Y, Loy CC, Tang X. Learning deep representation for imbalanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. United States: IEEE; 2016. p. 5375-84.
[113] Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. Clin Chem 2015;61:1446-52.
[114] Walsh T. Fuzzy Gold Standards: Approaches to Handling an Imperfect Reference Standard. J Dent 2018;74:S47-9.
[115] Chikere CM, Wilson K, Graziadio S, Vale L, Allen AJ. Diagnostic Test Evaluation Methodology: A Systematic Review of Methods Employed to Evaluate Diagnostic Tests in the Absence of Gold Standard-an Update. PLoS One 2019;14:e0223832.
[116] Pethani F. Promises and Perils of Artificial Intelligence in Dentistry. Aust Dent J 2020;66:124-35.
[117] Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, DoshiVelez F, et al. Do No Harm: A Roadmap for Responsible Machine Learning for Health Care. Nat Med 2019;25:1337-40.
[118] He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The Practical Implementation of Artificial Intelligence Technologies in Medicine. Nat Med 2019;25:30-6.