AccScience Publishing / JCTR / Volume 5 / Issue 2 / DOI: 10.18053/jctres.05.201902.002
ORIGINAL ARTICLE

Circulating plasma microRNA-126, microRNA-145, and microRNA-155 and  their association with atherosclerotic plaque characteristics

Evija Knoka1,2* Karlis Trusinskis1,2 Mairita Mazule2,3 Ieva Briede2 William Crawford5 Sanda Jegere2 Indulis Kumsars2 Inga Narbute2 Dace Sondore2 Aivars Lejnieks2,4 Andrejs Erglis1,3
Show Less
1 Latvian Centre of Cardiology, Pauls Stradins Clinical University Hospital, Riga, LV-1002
2 Department of Internal Diseases, Riga Stradins University, Riga, LV-1007
3 Faculty of Medicine, University of Latvia, Riga, LV-1050
4 Department of Endocrinology and Internal Medicine, Riga East Clinical University Hospital, Riga, LV-1038, Latvia
5 Faculty of Medicine, University of Oxford, Oxford OX1 2HB, United Kingdom
Submitted: 20 October 2019 | Revised: 11 December 2019 | Accepted: 15 December 2019 | Published: 13 January 2020
© 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background and Aim: Circulating microRNAs (miRNAs) have been identified as biomarkers for several diseases. Dysregulation of miRNA-126, -145 and -155 have been shown to be associated with atherosclerotic lesion formation. The aim of this study was to evaluate the association between atherosclerosis-related miRNAs and unfavourable atherosclerotic plaque characteristics. 

Methods and Results: Forty patients with stable coronary artery disease (CAD) admitted for elective percutaneous coronary intervention (PCI) were enrolled in a prospective study. After PCI, intravascular ultrasound (IVUS) and iMAP-IVUS analysis was performed to assess the proportion of fibrotic, necrotic, lipidic and calcific tissue within atherosclerotic plaques. Total RNA was isolated from plasma to evaluate the expression of circulating miRNA-126, miRNA-145 and miRNA-155. Plasma lipid and glucose metabolism-related variables were measured to determine any association with plaque characteristics or miRNA expression. Expression of miRNA-126 was negatively correlated with plaque fibrotic tissue (r=-0.28; p=0.044), while positively correlated with plaque necrotic tissue (r=0.31; p=0.029) and necrolipidic tissue (r=0.31; p=0.031). MiRNA-145 was positively correlated with plaque lipidic (r=0.32; p=0.023) and necrolipidic tissue (r=0.31; p=0.029). Patient age was associated with plaque fibrotic tissue (r=-0.41; p=0.005), necrotic tissue (r=0.33; p=0.022), and lipid content (r=0.33; p=0.022). HDL-C was positively correlated with plaque necrotic (r=0.28; p=0.042) and calcific (r=0.28; p=0.044) tissue volume. Calcific tissue volume was positively correlated with C-peptide (r=0.34; p=0.033). After multivariate logistic regression analysis, both miRNA-126 and miRNA-145 expression were associated with increased necrolipidic tissue content (β=0.34; p=0.050; and β=0.35; p=0.037 respectively). 

Conclusions: Expression of miRNA-126 and miRNA-145 were associated with increased plaque necrolipidic tissue content. 

Relevance for patients: Although further research is needed to support the study data, miRNA-126 and miRNA-145 may serve as potential plaque vulnerability biomarkers in the future.

Keywords
atherosclerosis
coronary artery disease
intravascular ultrasound
microRNA
Conflict of interest
The authors declare they have no competing interests.
References

[1] Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P. MicroRNA Therapeutics: Discovering Novel Targets and Developing Specific Therapy. Perspect Clin Res 2016;7:68-74.

[2] Qu QQ, MJ MM, PanJJ, Shi XJ, Zhang ZJ, TangYH, Yang GY. MicraRNA-126 is a Prospective Target for Vascular Disease. Neuroimmunol Neuroinflammation 2018:5-10.

[3] Raitoharju E, Oksala N, Lehtimaki T. MicroRNAs in the Atherosclerotic Plaque. Clin Chem 2013;12:1708-21.

[4] Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. miRNAs in Atherosclerotic Plaque Initiation, Progression, and Rupture. Trends Mol Med 2015;21:307-18.

[5] Zhao W, Zhao SP, Zhao YH. MicroRNA-143/-145 in Cardiovascular Diseases. Biomed Res Int 2015;2015:531740.

[6] Cao RY, Li Q, Miao Y, Zhang Y, Yuan W, Fan L, et al. The Emerging Role of MicroRNA-155 in Cardiovascular Diseases. Biomed Res Int 2016;2016:9869208.

[7] Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, et al. MicroRNA-155 Promotes Atherosclerosis by Repressing Bcl6 in Macrophages. J Clin Invest 2012;122:4190-202.

[8] Du F, Yu F, Wang Y, Hui Y, Carnevale K, Fu M, et al. MicroRNA-155 Deficiency Results in Decreased Macrophage Inflammation and Attenuated Atherogenesis in Apolipoprotein E-Deficient Mice. Arterioscler Thromb Vasc Biol 2014;34:759-67.

[9] Zhu J, Chen T, Yang L, Li Z, Wong MM, Zheng X, et al. Regulation of microRNA-155 in Atherosclerotic Inflammatory Responses by Targeting MAP3K10. PLoS One 2012;7:e46551.

[10] Donners MM, Wolfs IM, Stöger LJ, van der Vorst EP, Pöttgens CC, Heymans S, et al. Hematopoietic miR155 Deficiency Enhances Atherosclerosis and Decreases Plaque Stability in Hyperlipidemic Mice. PLoS One 2012;7:e35877.

[11] Sathyanarayana S, Carlier S, Li W, Thomas L. Characterisation of Atherosclerotic Plaque by Spectral Similarity of Radiofrequency Intravascular Ultrasound Signals. EuroIntervention 2009;5:133-9.

[12] Shin ES, Garcia-Garcia HM, Ligthart JM, Witberg K, Schultz C, van der Steen AF, et al. In vivo Findings of Tissue Characteristics Using iMap IVUS and Virtual Histology IVUS. EuroIntervention 2011;6:1017-9.

[13] American DiabetesAssociation. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2010;33 Suppl 1:S62-9.

[14] Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al.American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. JAm Coll Cardiol 2001;37:1478-92.

[15] Ren J, Zhang J, Xu N, Han G, Geng Q, Song J, et al. Signature of Circulating microRNAs as Potential Biomarkers in Vulnerable Coronary Artery Disease. PLoS One 2013;8:e80738.

[16] Leistner DM, Boeckel JN, Reis SM, Thome CE, De Rosa R, Keller T, et al. Transcoronary Gradients of Vascular miRNAs and Coronary Atherosclerotic Plaque Characteristics. Eur Heart J 2016;37:1738-49.

[17] Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in Patients with Coronary Artery Disease. Circ Res 2010;107:677-84.

[18] Li HY, Zhao X, Liu YZ, Meng Z, Wang D, Yang F, et al. Plasma microRNA-126-5p is Associated with the Complexity and Severity of Coronary Artery Disease in Patients with Stable Angina Pectoris. Cell Physiol Biochem 2016;39:837-46.

[19] Faccini J, Ruidavets JB, Cordelier P, Martins F, Maoret JJ, Bongard V, et al. Circulating miR-155,miR-145 and let-7c as Diagnostic Biomarkers of the Coronary Artery Disease. Sci Rep 2017;7:42916.

[20] Gao H, GuddetiRR, MatsuzawaY, Liu LP, Su LX, Guo D, et al. Plasma Levels of microRNA-145 are Associated with  Severity  of  Coronary  Artery  Disease.  PLoS  One 2015;10:e0123477.

[21]    Lin X, Qin Y, Jia J, Lin T, Lin X, Chen L, et al. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice. PLoS Genet 2016;12:e1006308.

[22]    Zhu M,Wei Y, Geißler C,Abschlag K, Corbalán Campos J, HristovM, et al. Hyperlipidemia-induced microRNA-155- 5p Improves β-cell Function by Targeting Mafb. Diabetes 2017;66:3072-84.

[23]    Sun B, Zhao H, Liu X, Lu Q, Zhao X, Pu J, et al. Elevated Hemoglobin  A1c  is  Associated  with   Carotid  Plaque Vulnerability: Novel Findings from Magnetic Resonance Imaging Study in Hypertensive Stroke Patients. Sci Rep 2016;6:33246.

[24]    Kim SH, Moon JY, LimYM, Kim KH, Yang WI, Sung JH, et  al.  Association  of  Insulin  Resistance  and  Coronary Artery Remodeling: An Intravascular Ultrasound  Study. Cardiovasc Diabetol 2015;14:74.

[25]    Iguchi    T,   Hasegawa    T,   Otsuka    K,   Matsumoto    K, Yamazaki  T,  Nishimura  S,  et  al.  Insulin  Resistance  is Associated with  Coronary  Plaque  Vulnerability:  Insight from Optical Coherence Tomography Analysis. Eur Heart J Cardiovasc Imaging 2014;15:284-91.

[26]    Mitsuhashi T, Hibi K, Kosuge M, Morita S, Komura N, Kusama I, et al. Relation between Hyperinsulinemia and Nonculprit Plaque Characteristics in Nondiabetic Patients with  Acute   Coronary   Syndromes.   JACC   Cardiovasc Imaging 2011;4:392-401.

[27]    Amano  T,  Matsubara  T,  Uetani  T,  Nanki  M,  Marui  N, Kato M, et al. Abnormal Glucose Regulation is Associated with Lipid-rich Coronary Plaque: Relationship to Insulin Resistance. JACC Cardiovasc Imaging 2008;1:39-45.

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing