AccScience Publishing / JCAU / Volume 5 / Issue 3 / DOI: 10.36922/jcau.179
Cite this article
131
Download
2894
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ORIGINAL ARTICLE

Bioregenerative algal architectures

Ramandeep Shergill1*
Show Less
1 Department of Bio-Integrated Design, Faculty of the Built Environment, The Bartlett School of Architecture, University College London, London, United Kingdom
Journal of Chinese Architecture and Urbanism 2023, 5(3), 179 https://doi.org/10.36922/jcau.179
Submitted: 14 March 2023 | Accepted: 16 August 2023 | Published: 7 September 2023
(This article belongs to the Special Issue Regenerative Architecture)
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Contemporary biospheres will be needed in terms of life support in the face of climatic consequences of the Anthropocene and to sustain future space travel. For life to flourish on Earth and beyond, key elements are required — including carbon, oxygen, hydrogen, nitrogen, sulfur, and phosphorous — which need to regenerate through physiochemical alliances and symbioses with other life forms. Bioregenerative systems are defined as artificial ecosystems, which are made up of intra-relationalities with various species including higher plants, microorganisms, and animals. In this paper, bioregenerative architectural habitats are considered a solution for a planet that faces substantial ecological damage and for the likelihood of multiplanetary inhabitation in future. Mutually beneficial systems incorporating working with microalgae in conjunction with bioreactor technologies could constitute a means of survival on a damaged planet or to help start multiplanetary colonies. This paper illustrates the potential of a non-anthropocentric, bioregenerative life support strategy working with various microalgae species. Past- and present-related bioregenerative systems are reviewed and future applications of microalgae enhancing a sympoietic alignment (collectively producing systems) of the human and nonhuman with microorganisms are considered. Future alliances with microalgae, Chlorella vulgaris, are proposed to work within bioregenerative systems on Earth and in space. This paper clarifies how the combination of technology, speculative architectural design and microalgae can enhance carbon dioxide mitigation, furthering gaseous exchange for life support, enabling human and nonhuman species to flourish in harsher environments on Earth and beyond low Earth orbit.

Keywords
Microalgae
Ecological impact
Photobioreactor
Carbon dioxide mitigation
Sympoiesis
Biological in situ resource utilization
Conflict of interest
The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References

Anderson, M.S., Ewert, M.K. & Keener, J.F. (2018). Life support baseline values and assumptions document (No. NASA/ TP-2015-218570/REV1).

 

Armstrong, R. A., editor. (2016). Star Ark: A Living, Self-sustaining Spaceship. Germany: Springer.

 

Bostrom, N. (2019). The vulnerable world hypothesis. Global Policy, 10(4):455-476. https://doi.org/10.1111/1758-5899.12718

 

Bostrom, N., & Ćirković, M. M., editors. (2020). Global Catastrophic Risks. Oxford: Oxford University Press.

 

Braidotti, R. (2013). Posthuman relational subjectivity and the politics of affirmation. In: Relational Architectural Ecologies. Milton Park: Routledge, p. 21-39.

 

Caldwell, G. S., In-na, P., Hart, R., Sharp, E., Stefanova, A., Pickersgill, M., et al. (2021). Immobilising microalgae and Cyanobacteria as biocomposites: New opportunities to intensify algae biotechnology and bioprocessing. Energies, 14(9):2566. https://doi.org/10.3390/en14092566

 

Cohen, J. E., & Tilman, D. (1996). Biosphere 2 and biodiversity: The lessons so far. Science, 274(5290):1150-1151. https://doi.org/10.1126/science.274.5290.1150

 

Darnell, A., Azad, A., Borlaug, B., Case, D., Chamberlain, C., Fortier, K., et al. (2015). MarsOASIS: A Predeployable Miniature Martian Greenhouse for Crop Production Research. In: 45th International Conference on Environmental Systems.

 

De Tommasi, E., Gielis, J., & Rogato, A. (2017). Diatom frustule morphogenesis and function: A multidisciplinary survey. Marine Genomics, 35:1-18. https://doi.org/10.1016/j.margen.2017.07.001

 

Dempster, W. F., & Allen, J. P. (2008). Integration of lessons from recent research for “Earth to Mars” life support systems. Advances in Space Research, 41(5):675-683. https://doi.org/10.1016/j.asr.2007.02.075

 

Detrell, G. (2021). Chlorella vulgaris photobioreactor for oxygen and food production on a moon base-potential and challenges. Frontiers in Astronomy and Space Sciences, 8:124. https://doi.org/10.3389/fspas.2021.700579

 

Detrell, G., Helisch, H., Keppler, J., Martin, J., Henn, N., Fasoulas, S., et al. (2020a). PBR@ LSR: The Algae-based Photobioreactor Experiment at the ISS-operations and Results. In: 2020 International Conference on Environmental Systems.

 

Detrell, G., Keppler, J., Helisch, H., Martin, J., Henn, N., Ewald, R., et al. (2020b). PBR@ LSR: The Algae-based Photobioreactor Experiment at the ISS-operations and Results. In: 2020 International Conference on Environmental Systems.

 

Dominoni, A. (2020). Design of Supporting Systems for Life in Outer Space: A Design Perspective on Space Missions Near Earth and Beyond. Germany: Springer Nature.

 

Elrayies, G. M. (2018). Microalgae: Prospects for greener future buildings. Renewable and Sustainable Energy Reviews, 81:1175-1191. https://doi.org/10.1016/j.rser.2017.08.032

 

Escobar, C., & Nabity, J. (2017). Past, Present, and Future of Closed Human Life Support Ecosystems-a Review. In: 47th International Conference on Environmental Systems.

 

Fahrion, J., Mastroleo, F., Dussap, C. G., & Leys, N. (2021). Use of photobioreactors in regenerative life support systems for human space exploration. Frontiers in Microbiology, 12:699525. https://doi.org/10.3389/fmicb.2021.699525

 

Fong, K. (2013). Extremes: Life, Death and the Limits of the Human Body. France: Hachette UK.

 

Furfaro, R., Sadler, P., & Giacomelli, G. A. (2016). Mars-lunar Greenhouse (M-LGH) Prototype for Bioregenerative Life Support Systems in Future Planetary Outposts. In: Proceedings of the International Astronautical Congress, IAC. France: International Astronautical Federation, IAF.

 

Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view of life: We have never been individuals. The Quarterly Review of Biology, 87(4):325-341. https://doi.org/10.1086/668166

 

Häder, D. P. (2020). On the way to mars-flagellated algae in bioregenerative life support systems under microgravity conditions. Frontiers in Plant Science, 10:1621. https://doi.org/10.3389/fpls.2019.01621

 

Häder, D. P., & Hemmersbach, R. (2017). Gravitaxis in Euglena. In: Euglena: Biochemistry, Cell and Molecular Biology. Cham: Springer, p. 237-266. https://doi.org/10.1007/978-3-319-54910-1_11

 

Häder, D. P., Braun, M., Grimm, D., & Hemmersbach, R. (2017). Gravireceptors in eukaryotes-a comparison of case studies on the cellular level. NPJ Microgravity, 3(1):13. https://doi.org/10.1038/s41526-017-0018-8.

 

Haraway, D. (2016). Staying with the Trouble. Durham: Duke University Press, p. 97.

 

Hauslage, J., Strauch, S. M., Eßmann, O., Haag, F. W. M., Richter, P., Krüger, J., et al. (2018). Eu: CROPIS-“Euglena gracilis: Combined regenerative organic-food production in space”-a space experiment testing biological life support systems under lunar and Martian gravity. Microgravity Science and Technology, 30:933-942. https://doi.org/10.1007/s12217-018-9654-1

 

Helisch, H., Belz, S., Keppler, J., Detrell, G., Henn, N., Fasoulas, S., et al. (2018). Non-axenic Microalgae Cultivation in Space-challenges for the Membrane μgPBR of the ISS Experiment PBR@ LSR. In: 48th International Conference on Environmental Systems.

 

Helisch, H., Keppler, J., Detrell, G., Belz, S., Ewald, R., Fasoulas, S., et al. (2020). High density long-term cultivation of Chlorella vulgaris SAG 211-12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in SPACE. Life Sciences in Space Research, 24:91-107. https://doi.org/10.1016/j.lssr.2019.08.001

 

Hendrickx, L., De Wever, H., Hermans, V., Mastroleo, F., Morin, N., Wilmotte, A., et al. (2006). Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-ecological Life Support System Alternative): Reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Research in Microbiology, 157:77-86. https://doi.org/10.1016/j.resmic.2005.06.014

 

Hogle, M., Imhof, B., Hoheneder, W., Armstrong, R., Ieropoulos, I., Wallis, L., et al. (2023). Living architecture: Metabolic applications for next-generation, selectively programmable bioreactors. In: Urban and Regional Agriculture. Cambridge: Academic Press, pp. 595-614.

 

Hume, B. C. C., D’Angelo, C., Smith, E. G., Stevens, J. R., Burt, J., & Wiedenmann, J. (2015). Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Scientific Reports, 5(1):8562. https://doi.org/10.1038/srep08562

 

Hüpkes, P., & Dürbeck, G. (2022). The technical non-reproducibility of the Earth system: Scale, Biosphere 2, and T.C. Boyle’s terranauts. The Anthropocene Review, 9(2):161-174. https://doi.org/10.1177/20530196211048935

 

Lakaniemi, A. M., Hulatt, C. J., Wakeman, K. D., Thomas, D. N., & Puhakka, J. A. (2012). Eukaryotic and prokaryotic microbial communities during microalgal biomass production. Bioresource Technology, 124:387-393. https://doi.org/10.1016/j.biortech.2012.08.048

 

Lenton, T. M., Dahl, T. W., Daines, S. J., Mills, B. J. W., Ozaki, K., Saltzman, M. R., et al. (2016). Earliest land plants created modern levels of atmospheric oxygen. Proceedings of the National Academy of Sciences of the United States of America, 113(35):9704-9709. https://doi.org/10.1073/pnas.1604787113

 

Lewis, S. L., & Maslin, M. A. (2018). Human Planet: How we Created the Anthropocene. United Kingdom: Yale University Press.

 

Malik, S., Hagopian, J., Mohite, S., Lintong, C., Stoffels, L., Giannakopoulos, S., et al. (2020). Robotic extrusion of algae‐laden hydrogels for large‐scale applications. Global Challenges, 4(1):1900064. https://doi.org/10.1002/gch2.201900064

 

Mapstone, L. J., Leite, M. N., Purton, S., Crawford, I. A., & Dartnell, L. (2022). Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnology Advances, 59:107946. https://doi.org/10.1016/j.biotechadv.2022.107946

 

Margulis, L. (2008). Symbiotic Planet: A New Look at Evolution. United States: Basic Books.

 

Marino, B. & Odum, H. (1999). Biosphere 2. Introduction and research progress. Ecological Engineering. 13(1-4): 3–14.

 

Martin, W. F. (2017). Physiology, anaerobes, and the origin of mitosing cells 50 years on. Journal of Theoretical Biology, 434:2-10. https://doi.org/10.1016/j.jtbi.2017.01.004

 

Matula, E. E., & Nabity, J. A. (2019). Failure modes, causes, and effects of algal photobioreactors used to control a spacecraft environment. Life Sciences in Space Research (Amst), 20:35-52. https://doi.org/10.1016/j.lssr.2018.12.001

 

MELiSSA Foundation. (2020). Available from: https://www. melissafoundation.org/page/melissa-pilot-plant [Last accessed on 2023 Jul 20].

 

Nelson, N. (2011). Photosystems and global effects of oxygenic photosynthesis. Biochimica et Biophysica Acta, 1807(8):856-863. https://doi.org/10.1016/j.bbabio.2010.10.011

 

Němcová, Y., & Kalina, T. (2000). Cell wall development, microfibril and pyrenoid structure in type strains of Chlorella vulgaris, C. kessleri, C. sorokiniana compared with C. luteoviridis (Trebouxiophyceae, Chlorophyta). Archiv für Hydrobiologie Supplement Volumes, 100:95-106. https://doi.org/10.1127/algol_stud/100/2000/95

 

Niederwieser, T. (2018). Analysis of Factors Affecting the Implementation of an Algal Photobioreactor into a Spacecraft Life Support System. Ann Arbor, Michigan: ProQuest Dissertations Publishing.

 

Niederwieser, T., Kociolek, P., & Klaus, D. (2018). A review of algal research in space. Acta Astronautica, 146:359-367. https://doi.org/10.1016/j.actaastro.2018.03.026

 

Olson, R. L., Oleson, M. W., & Slavin, T. J. (1988). CELSS for advanced manned mission. HortScience, 23(2):275-286. https://doi.org/10.21273/hortsci.23.2.275

 

Pazar, C. C. (2020). Resource utilization on mars. Journal of Geophysical Research, 124:12.

 

Pennisi, E. (2017). Making waves. Science, 355:1006-1009. https://doi.org/10.1126/science.355.6329.1006

 

Poughon, L., Laroche, C., Creuly, C., Dussap, C. G., Paille, C., Lasseur, C., et al. (2020). Limnospira indica PCC8005 growth in photobioreactor: Model and simulation of the ISS and ground experiments. Life Sciences in Space Research (Amst), 25:53-65. https://doi.org/10.1016/j.lssr.2020.03.002

 

Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35:265-278. https://doi.org/10.1016/j.rser.2014.04.007

 

Schramski, J. R., Gattie, D. K., & Brown, J. H. (2015). Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind. Proceedings of the National Academy of Sciences United States of America, 112(31):9511-9517. https://doi.org/10.1073/pnas.1508353112

 

Schulze, D., Philpot, C., Morfill, G., Klein, B., & Beck, T. (2016). Food Production in Space-operating a Greenhouse in Low Earth Orbit. In: 14th International Conference on Space Operations, p. 2533. https://doi.org/10.2514/6.2016-2533

 

Shergill, R. (2022). The Birth of a Critical Posthuman Practice. London: The Museum of Contemporary Art (MOCA).

 

Sloterdijk, P. (2009). Talking to Myself about the Poetics of Space. Cambridge, MA: Harvard Design Magazine. Available from: https://www.harvarddesignmagazine.org/issues/30/talking-to-myself-about-the-poetics-of-space [Last accessed on 2023 Mar 09].

 

Sterrenburg, F. A. S., & Hoover, R. B. (2011). Extremophile Diatoms: Implications to the Drake Equation. In: SPIE Conference OP409: Instruments, Methods, and Mission for Astrobiology XIV (No. M11-0447).

 

Talaei, M., Mahdavinejad, M., & Azari, R. (2020). Thermal and energy performance of algae bioreactive façades: A review. Journal of Building Engineering, 28:101011. https://doi.org/10.1016/j.jobe.2019.101011

 

Vander Wiel, J. B., Mikulicz, J. D., Boysen, M. R., Hashemi, N., Kalgren, P., Nauman, L. M., et al. (2017). Characterization of Chlorella vulgaris and Chlorella protothecoides using multi-pixel photon counters in a 3D focusing optofluidic system. RSC Advances, 7(8):4402-4408. https://doi.org/10.1039/C6RA25837A

 

Verbeelen, T., Leys, N., Ganigué, R., & Mastroleo, F. (2021). Development of nitrogen recycling strategies for bioregenerative life support systems in space. Frontiers in Microbiology, 12:700810. https://doi.org/10.3389/fmicb.2021.700810

 

Verseux, C., Baqué, M., Lehto, K., de Vera, J. P. P., Rothschild, L. J., & Billi, D. (2016). Sustainable life support on Mars-the potential roles of Cyanobacteria. International Journal of Astrobiology, 15(1):65-92. https://doi.org/10.1017/S147355041500021X

 

Verseux, C., Heinicke, C., Ramalho, T. P., Determann, J., Duckhorn, M., Smagin, M., et al. (2021). A low-pressure, N2/CO2 atmosphere is suitable for Cyanobacterium-based life-support systems on Mars. Frontiers in Microbiology, 12:611798. https://doi.org/10.3389/fmicb.2021.611798

 

Verseux, C., Poulet, L., & de Vera, J. P. (2022). Bioregenerative life-support systems for crewed missions to the Moon and Mars. Frontiers in Astronomy and Space Sciences, 9:977364. https://doi.org/10.3389/fspas.2022.977364

 

Volponi, M., & Lasseur, C. (2020). Considerations on life support systems for interstellar travel: A regenerative story. Acta Futura, 12:133-149. https://doi.org/10.5281/zenodo.3747356

 

Warren, K., Milovanovic, J., & Kim, K. H. (2023). Effect of a microalgae facade on design behaviors: A pilot study with architecture students. Buildings, 13(3):611. https://doi.org/10.3390/buildings13030611

 

Weber, S., Grande, P. M., Blank, L. M., & Klose, H. (2022). Insights into cell wall disintegration of Chlorella vulgaris. PLoS One, 17(1):e0262500. https://doi.org/10.1371/journal.pone.0262500

 

Wilkinson, S. J. (2018). Algae building technology: Is it the next sustainable technology? Building Economist, 2018:31-35.

 

Wilkinson, S., Stoller, P., Ralph, P., Hamdorf, B., Catana, L. N., & Kuzava, G. S. (2017). Exploring the feasibility of algae building technology in NSW. Procedia Engineering, 180:1121-1130. https://doi.org/10.1016/j.proeng.2017.04.272

 

Yamamoto, M., Kurihara, I., & Kawano, S. (2005). Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta, 221:766-775. https://doi.org/10.1007/s00425-005-1486-8

 

Yao, S., Lyu, S., An, Y., Lu, J., Gjermansen, C., & Schramm, A. (2019). Microalgae-bacteria symbiosis in microalgal growth and biofuel production: A review. Journal of Applied Microbiology, 126(2):359-368. https://doi.org/10.1111/jam.14095

 

Young, L. R., & Sutton, J. P., editors. (2021). Handbook of Bioastronautics. Germany: Springer, pp. 3-19.

 

Zheng, Y., Ouyang, Z., Li, C., Liu, J., & Zou, Y. (2008). China’s lunar exploration program: Present and future. Planetary and Space Science, 56(7):881-886. https://doi.org/10.1016/j.pss.2008.01.002

 

Zhu, H., Wang, H., Zhang, Y., & Li, Y. (2023). Biophotovoltaics: Recent advances and perspectives. Biotechnology Advances, 64:108101. https://doi.org/10.1016/j.biotechadv.2023.108101

 

Zimmer, C. (2019). The Lost History of One of the World’s Strangest Science Experiments. New York: The New York Times. Available from: https://www.nytimes.com/2019/03/29/sunday-review/biosphere-2-climate-change.html [Last accessed on 2023 Mar 08].

 

Zubrin, R. (2023). Local resource creation on Mars. In: Handbook of Space Resources. Cham: Springer International Publishing, pp. 669-687.

Share
Back to top
Journal of Chinese Architecture and Urbanism, Electronic ISSN: 2717-5626 Published by AccScience Publishing