AccScience Publishing / ITPS / Online First / DOI: 10.36922/itps.4449
REVIEW ARTICLE

Exploring the transcriptomic landscape of rheumatoid arthritis using next-generation RNA sequencing

Rideb Chakraborty1 Bijoy Jana1 Sandip Koner1 Surya Kanta Maiti1 Naureen Afrose1 Pratibha Bhowmick1 Mithun Bhowmick1*
Show Less
1 Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences and Research, BASU Sarani, Bidhannagar, Durgapur, West Bengal, India
INNOSC Theranostics and Pharmacological Sciences, 4449 https://doi.org/10.36922/itps.4449
Submitted: 6 August 2024 | Accepted: 21 October 2024 | Published: 22 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and joint damage. Transcriptomics has been utilized in RA profiling to identify locations that were previously unclear. A robust technique for examining the intricate transcriptomic landscape of RA is next-generation RNA sequencing (RNA-seq). This review has explored the use of RNA-seq to understand the pathophysiology of RA. Detailed discussions are presented on the fundamentals of RNA-seq technology, how RNA extracted from the synovium is incorporated into gene expression patterns analysis, and how RNA-seq is superior to other methods. We have explored several applications of RNA-seq in RA research, emphasizing its potential for identifying dysregulated pathways, detecting novel biomarkers, and characterizing gene expression levels. Furthermore, this review has clarified the regulatory networks and signaling pathways identified in RNA-seq research and investigated the possibility of using transcriptomic RNA-seq as a diagnostic tool for RA. In conclusion, we have highlighted the significance of using transcriptome data to achieve a more comprehensive understanding of the molecular processes underlying RA. Hence, this review underscores the revolutionary influence of RNA-seq on RA research, paving the way for improved diagnostics, tailored therapy, and the discovery of novel treatment targets for individuals with RA.

Graphical abstract
Keywords
Rheumatoid arthritis
Next-generation RNA sequencing
Long non-coding RNA
Circular RNA
Transcriptomic study
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Vlachogiannis NI, Gatsiou A, Silvestris DA, et al. Increased adenosine-to-inosine RNA editing in rheumatoid arthritis. J Autoimmun. 2020;106:102329. doi: 10.1016/j.jaut.2019.102329

 

  1. Shchetynsky K, Protsyuk D, Ronninger M, Diaz-Gallo LM, Klareskog L, Padyukov L. Gene-gene interaction and RNA splicing profiles of MAP2K4 gene in rheumatoid arthritis. Clin Immunol. 2015l;158(1):19-28. doi: 10.1016/j.clim.2015.02.011

 

  1. Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun. 2023;134:102982.

 

  1. Ding Q, Hu W, Wang R, et al. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy. Signal Transduct Target Ther. 2023;8(1):68. doi: 10.1038/s41392-023-01331-9

 

  1. Roszkowski L, Ciechomska M. Tuning monocytes and macrophages for personalized therapy and diagnostic challenge in rheumatoid arthritis. Cells. 2021;10(8):1860. doi: 10.3390/cells10081860

 

  1. Abbasi M, Mousavi MJ, Jamalzehi S, et al. Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol. 2019;234(7):10018-10031. doi: 10.1002/jcp.27860

 

  1. Filer A, Ward LS, Kemble S, et al. Identification of a transitional fibroblast function in very early rheumatoid arthritis. Ann Rheum Dis. 2017;76(12):2105-2112. doi: 10.1136/annrheumdis-2017-211286

 

  1. Jezernik G, Gorenjak M, Potočnik, U. Gene ontology analysis highlights biological processes influencing non-response to anti-TNF therapy in rheumatoid arthritis. Biomedicines. 2022;10(8):1808. doi: 10.3390/biomedicines10081808

 

  1. Lin YJ, Anzaghe M, Schülke, S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020;9(4):880. doi: 10.3390/cells9040880

 

  1. Chambers DC, Carew AM, Lukowski SW, Powell JE. Transcriptomics and single‐cell RNA‐sequencing. Respirology. 2019;24(1):29-36. doi: 10.1111/resp.13412

 

  1. Dong Z, Chen Y. Transcriptomics: Advances and approaches. Sci China Life Sci. 2013;56:960-967. doi: 10.1007/s11427-013-4557-2

 

  1. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Computational Biol. 2017;13(5):e1005457. doi: 10.1371/journal.pcbi.1005457

 

  1. Draghici S, Khatri P, Eklund AC, Szallasi Z. Reliability and reproducibility issues in DNA microarray measurements. TRENDS Genet. 2006;22(2):101-109.doi: 10.1016/j.tig.2005.12.005

 

  1. Qian X, Ba Y, Zhuang Q, Zhong G. RNA-Seq technology and its application in fish transcriptomics. OMICS. 2014;18(2):98-110. doi: 10.1089/omi.2013.0110

 

  1. Kulkarni A, Anderson AG, Merullo DP, Konopka G. Beyond bulk: A review of single cell transcriptomics methodologies and applications. Curr Opin Biotechnol. 2019;58:129-136. doi: 10.1016/j.copbio.2019.03.001

 

  1. Sumitomo S, Nagafuchi Y, Tsuchida Y, et al. Transcriptome analysis of peripheral blood from patients with rheumatoid arthritis: A systematic review. Inflamm Regen. 2018;38:21. doi: 10.1186/s41232-018-0078-5

 

  1. Liu F, Wang Z, Niu D, et al. Single-Cell RNA sequencing transcriptomics revealed HCMV IE2-related microglia responses in Alzheimer’s-like disease in transgenic mice. Mol Neurobiol. 2024;61(3):1331-1345. doi: 10.1007/s12035-023-03553-y

 

  1. Abe K, Abe N, Sugaya T, et al. Characteristics of peripheral blood mononuclear cells and potential related molecular mechanisms in patients with autoimmune hepatitis: A single-cell RNA sequencing analysis. Med Mol Morphol. 2024;57:110-123. doi: 10.1007/s00795-024-00380-5

 

  1. Zhang X, Chao P, Zhang L, et al. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Front Immunol. 2023;14:1030198. doi: 10.3389/fimmu.2023.1030198

 

  1. Zhang D, Li Y, Du C, et al. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med. 2022;20(1):363. doi: 10.1186/s12967-022-03566-6

 

  1. Xu K, Wang R, Xie H, et al. Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis. 2021;10:66. doi: 10.1038/s41389-021-00355-6

 

  1. You Y, Zhao X, Wu Y, et al. Integrated transcriptome profiling revealed that elevated long non-coding RNA-AC007278. 2 expression repressed CCR7 transcription in systemic lupus erythematosus. Front Immunol. 2021;12:615859. doi: 10.3389/fimmu.2021.615859

 

  1. Li CX, Chen J, Lv SK, Li JH, Li LL, Hu X. Whole‐transcriptome RNA sequencing reveals significant differentially expressed mRNAs, miRNAs, and lncRNAs and related regulating biological pathways in the peripheral blood of COVID‐19 patients. Mediators Inflamm. 2021;2021(1):6635925. doi: 10.1155/2021/6635925

 

  1. Chen T, Yang S, Xu J, Lu W, Xie X. Transcriptome sequencing profiles of cervical cancer tissues and SiHa cells. Funct Integr Genomics. 2020;20:211-221. doi: 10.1007/s10142-019-00706-y

 

  1. Mao Y, Shen J, Lu Y, et al. RNA sequencing analyses reveal novel differentially expressed genes and pathways in pancreatic cancer. Oncotarget. 2017;8(26):42537-42547. doi: 10.18632/oncotarget.16451

 

  1. Eswaran J, Cyanam D, Mudvari P, et al. Transcriptomic landscape of breast cancers through mRNA sequencing. Sci Rep. 2012;2(1):264. doi: 10.1038/srep00264

 

  1. Anaparti V, Wiens D, O’Neil LJ, et al. Utility of baseline transcriptomic analysis of rheumatoid arthritis synovium as an indicator for long-term clinical outcomes. Front Med. 2022;9:823244. doi: 10.3389/fmed.2022.823244

 

  1. Song X, Lin Q. Genomics, transcriptomics and proteomics to elucidate the pathogenesis of rheumatoid arthritis. Rheumatol Int. 2017;37:1257-1265. doi: 10.1007/s00296-017-3732-3

 

  1. Mun S, Lee J, Park M, Shin J, Lim MK, Kang HG. Serum biomarker panel for the diagnosis of rheumatoid arthritis. Arthritis Res Ther. 2021;23:31. doi: 10.1186/s13075-020-02405-7

 

  1. Boneva S, Schlecht A, Böhringer D, et al. 3’ MACE RNA-sequencing allows for transcriptome profiling in human tissue samples after long-term storage. Lab Investig. 2020;100(10):1345-1355. doi: 10.1038/s41374-020-0446-z

 

  1. Gavrilă BI, Ciofu C, Stoica V. Biomarkers in rheumatoid arthritis, what is new? J Med Life. 2016;9(2):144.

 

  1. Kolarz B, Podgorska D, Podgorski R. Insights of rheumatoid arthritis biomarkers. Biomarkers. 2021;26(3):185-195. doi: 10.1080/1354750X.2020.1794043

 

  1. Detroja R, Mukherjee S, Frenkel-Morgenstern M. The landscape of novel expressed chimeric RNAs in rheumatoid arthritis. Cells. 2022;11(7):1092. doi: 10.3390/cells11071092

 

  1. Hao R, Du H, Guo L, et al. Identification of dysregulated genes in rheumatoid arthritis based on bioinformatics analysis. PeerJ. 2017;5:e3078. doi: 10.7717/peerj.3078

 

  1. Kłak A, Paradowska-Gorycka A, Kwiatkowska B, Raciborski F. Personalized medicine in rheumatology. Reumatol Rheumatol. 2016;54(4):177-186. doi: 10.5114/reum.2016.62472

 

  1. Burska AN, Roget K, Blits M, et al. Gene expression analysis in RA: towards personalized medicine. Pharmacogenomics J. 2014;14:93-106. doi: 10.1038/tpj.2013.48

 

  1. Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Dysregulation of non-coding RNAs in rheumatoid arthritis. Biomed Pharmacother. 2020;130:110617. doi: 10.1016/j.biopha.2020.110617

 

  1. De Almeida DE, Ling S, Pi X, Hartmann-Scruggs AM, Pumpens P, Holoshitz J. Immune dysregulation by the rheumatoid arthritis shared epitope. J Immunol. 2010;185(3):1927-1934. doi: 10.4049/jimmunol.0904002

 

  1. Long A, Kleiner A, Looney RJ. Immune dysregulation. J Allergy Clin Immunol. 2023;151(1), 70-80.

 

  1. Carr HL, Turner JD, Major T, Scheel-Toellner D, Filer A. New developments in transcriptomic analysis of synovial tissue. Front Med (Lausanne). 2020;7:21. doi: 10.3389/fmed.2020.00021

 

  1. Fraser JR, McCall JF. Culture of synovial cells in vitro. Notes on isolation and propagation. Ann Rheum Dis. 1965;24(4):351. doi: 10.1136/ard.24.4.351

 

  1. Smiljanovic B, Grützkau A, Sörensen T, et al. Synovial tissue transcriptomes of long-standing rheumatoid arthritis are dominated by activated macrophages that reflect microbial stimulation. Sci Rep. 2020;10(1):7907. doi: 10.1038/s41598-020-64431-4

 

  1. Lorenz P, Ruschpler P, Koczan D, Stiehl P, Thiesen HJ. From transcriptome to proteome: Differentially expressed proteins identified in synovial tissue of patients suffering from rheumatoid arthritis and osteoarthritis by an initial screen with a panel of 791 antibodies. Proteomics. 2003;3(6):991-1002. doi: 10.1002/pmic.200300412

 

  1. Jonsson AH. Synovial tissue insights into heterogeneity of rheumatoid arthritis. Curr Rheumatol Rep. 2024;26(3):81-88. doi: 10.1007/s11926-023-01129-2

 

  1. Li Yim AY, Ferrero E, Maratou K, et al. Novel insights into rheumatoid arthritis through characterization of concordant changes in DNA methylation and gene expression in synovial biopsies of patients with differing numbers of swollen joints. Front Immunol. 2021;12:651475.

 

  1. Iwasaki T, Watanabe R, Ito H, et al. Monocyte-derived transcriptomes explain the ineffectiveness of abatacept in rheumatoid arthritis. Arthritis Res Ther. 2024;26(1):1. doi: 10.1186/s13075-023-03236-y

 

  1. Hu SY, Song HM, Jiang, F, et al. Synovial transcriptome-wide association study implicates novel genes underlying rheumatoid arthritis risk. 2024; preprint. doi: 10.21203/rs.3.rs-4126672/v1

 

  1. Li X, Sun H, Li H, et al. A single-cell RNA-sequencing analysis of distinct subsets of synovial macrophages in rheumatoid arthritis. DNA Cell Biol. 2023;42(4):212-222. doi: 10.1089/dna.2022.0509

 

  1. Song X, Zhang Y, Zhao L, et al. Analyzation of the peripheral blood mononuclear cells atlas and cell communication of rheumatoid arthritis patients based on single‐cell RNA‐Seq. J Immunol Res. 2023;(1):6300633. doi: 10.1155/2023/6300633

 

  1. Chen N, Fan B, He Z, Yu X, Wang J. Identification of HBEGF+ fibroblasts in the remission of rheumatoid arthritis by integrating single-cell RNA sequencing datasets and bulk RNA sequencing datasets. Arthritis Res Ther. 2022;24(1):215. doi: 10.1186/s13075-022-02902-x

 

  1. Sciacca E, Surace AE, Alaimo S, et al. Network analysis of synovial RNA sequencing identifies gene-gene interactions predictive of response in rheumatoid arthritis. Arthritis Res Ther. 2022;24(1):166. doi: 10.1186/s13075-022-02803-z

 

  1. Zhang R, Jin Y, Chang C, et al. RNA-Seq and network analysis reveal unique chemokine activity signatures in the synovial tissue of patients with rheumatoid arthritis. Front Med (Lausanne). 2022;9:799440. doi: 10.3389/fmed.2022.799440

 

  1. Jiang H, Cao K, Fan C, Cui X, Ma Y, Liu J. Transcriptome-wide high-throughput m6A sequencing of differential m6A methylation patterns in the human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A. J Inflamm Res. 2021;14:575-586. doi: 10.2147/JIR.S296006

 

  1. Stephenson W, Donlin LT, Butler A, et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat Commun. 2018;9(1):791. doi: 10.1038/s41467-017-02659-x

 

  1. Singh JA, Saag KG, Bridges SL Jr., et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016;68(1):1-26. doi: 10.1002/art.39480

 

  1. Myasoedova E, Crowson CS, Kremers HM, Therneau TM, Gabriel SE. Is the incidence of rheumatoid arthritis rising?: Results from Olmsted County, Minnesota, 1955-2007. Arthritis Rheum. 2010;62(6):1576-1582. doi: 10.1002/art.27425

 

  1. Drosos AA, Pelechas E, Voulgari PV. Radiological findings of the cervical spine in rheumatoid arthritis: What a rheumatologist should know. Curr Rheumatol Rep. 2020;22:19. doi: 10.1007/s11926-020-00894-8

 

  1. Groves C, Chandramohan M, Chew NS, Aslam T, Helliwell PS. Clinical examination, ultrasound and MRI imaging of the painful elbow in psoriatic arthritis and rheumatoid arthritis: Which is better, ultrasound or MR, for imaging enthesitis? Rheumatol Therapy. 2017;4:71-84. doi: 10.1007/s40744-017-0053-7

 

  1. Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484-492. doi: 10.1038/nrg3230

 

  1. Brandt B, Rashidiani S, Bán Á, Rauch TA. DNA methylation-governed gene expression in autoimmune arthritis. Int J Mole Sci. 2019;20(22):5646. doi: 10.3390/ijms20225646

 

  1. Fang G, Zhang QH, Tang Q, Jiang Z, Xing S, Li J, Pang Y. Comprehensive analysis of gene expression and DNA methylation datasets identify valuable biomarkers for rheumatoid arthritis progression. Oncotarget. 2018;9(3):2977. doi: 10.18632/oncotarget.22918

 

  1. Xing X, Xia Q, Gong B, Shen Z, Zhang Y. Identification of tissue-specific expressed hub genes and potential drugs in rheumatoid arthritis using bioinformatics analysis. Front Genet. 2022;13:855557. doi: 10.3389/fgene.2022.855557

 

  1. Zhang R, Yang X, Wang J, et al. Identification of potential biomarkers for differential diagnosis between rheumatoid arthritis and osteoarthritis via integrative genome-wide gene expression profiling analysis. Mole Med Re. 2019;19(1):30-40. doi: 10.3892/mmr.2018.9677

 

  1. Chen Y, Li H, Lai L, Feng Q, Shen J. Identification of common differentially expressed genes and potential therapeutic targets in ulcerative colitis and rheumatoid arthritis. Front Genet. 2020;11:572194. doi: 10.3389/fgene.2020.572194

 

  1. Wang X, Xia S, Fu B. RNA-seq analysis of synovial fibroblasts in human rheumatoid arthritis. Mol Med Rep. 2014;10(1):241-247. doi: 10.3892/mmr.2014.2182

 

  1. Qian S, Sun S, Zhang L, et al. Integrative analysis of DNA methylation identified 12 signature genes specific to metastatic ccRCC. Front Oncol. 2020;10:556018. doi: 10.3389/fonc.2020.556018

 

  1. Aihaiti Y, Tuerhong X, Ye JT, Ren XY, Xu P. Identification of pivotal genes and pathways in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis through integrated bioinformatic analysis. Mol Med Rep. 2020;22(4):3513-3524. doi: 10.3892/mmr.2020.11406

 

  1. Lewis MJ, Barnes MR, Blighe K, et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 2019;28(9):2455-2470.e5 doi: 10.1016/j.celrep.2019.07.091

 

  1. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6(1):15. doi: 10.1038/s41413-018-0016-9

 

  1. Jang S, Kwon EJ, Lee JJ. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int J Mol Sci. 2022;23(2):905. doi: 10.3390/ijms23020905

 

  1. Malemud CJ. Intracellular signaling pathways in rheumatoid arthritis. J Clin Cellular Immunol. 2013;4:160. doi: 10.4172/2155-9899.1000160

 

  1. Tasaki S, Suzuki K, Kassai Y, et al. Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission. Nat Commun. 2018;9(1):2755. doi: 10.1038/s41467-018-05044-4

 

  1. Ding Z, Chen W, Wu H, et al. Integrative network fusion-based multi-omics study for biomarker identification and patient classification of rheumatoid arthritis. Chin Med. 2023;18(1):48. doi: 10.1186/s13020-023-00750-8

 

  1. Xiao H, Bartoszek K, Lio P. Multi-omic analysis of signalling factors in inflammatory comorbidities. BMC Bioinformatics. 2018;19:439. doi: 10.1186/s12859-018-2413-x

 

  1. Jian C, Wei L, Wu T, et al. Comprehensive multi-omics analysis reveals the core role of glycerophospholipid metabolism in rheumatoid arthritis development. Arthritis Res Ther. 2023;25(1):246. doi: 10.1186/s13075-023-03208-2

 

  1. Dai X, Shen L. Advances and trends in omics technology development. Front Med (Lausanne). 2022;9:911861. doi: 10.3389/fmed.2022.911861

 

  1. Canzler S, Schor J, Busch W, et al. Prospects and challenges of multi-omics data integration in toxicology. Arch Toxicol. 2020;94:371-388. doi: 10.1007/s00204-020-02656-y

 

  1. Mukherjee A, Abraham S, Singh A, Balaji S, Mukunthan KS. From data to cure: A comprehensive exploration of multi-omics data analysis for targeted therapies. Mol Biotechnol. 2024:1-21.

 

  1. O’Connor LM, O’Connor BA, Lim SB, Zeng J, Lo CH. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. J Pharm Anal. 2023;13(8):836-850. doi: 10.1016/j.jpha.2023.06.011

 

  1. O’Donnell ST, Ross RP, Stanton C. The progress of multi-omics technologies: Determining function in lactic acid bacteria using a systems level approach. Front Microbiol. 2020;10:3084. doi: 10.3389/fmicb.2019.03084

 

  1. Lorefice L, Pitzalis M, Murgia F, Fenu G, Atzori L, Cocco E. Omics approaches to understanding the efficacy and safety of disease-modifying treatments in multiple sclerosis. Front Genet. 2023;14:1076421. doi: 10.3389/fgene.2023.1076421

 

  1. Grieshaber-Bouyer R, Exner T, Hackert NS, et al. Ageing and interferon gamma response drive the phenotype of neutrophils in the inflamed joint. Ann Rheum Dis. 2022;81(6):805-814. doi: 10.1136/annrheumdis-2021-221866
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Print ISSN: 2705-0734, Published by AccScience Publishing