AccScience Publishing / ITPS / Online First / DOI: 10.36922/itps.1651
ORIGINAL RESEARCH ARTICLE

Evaluating the SARS-CoV-2 spike glycoprotein as a molecular target for therapeutic development

Brandon H. Adame-Velasco1† Pablo Octavio-Aguilar1* Luis H. Mendoza-Huizar2† Liliana M. Aguilar-Castro1†
Show Less
1 Genetics Laboratory, Biological Research Center, Autonomous University of the State of Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
2 Academic Area of Chemistry, Autonomous University of the State of Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
†These authors contributed equally to this work.
INNOSC Theranostics and Pharmacological Sciences 2024, 7(2), 1651 https://doi.org/10.36922/itps.1651
Submitted: 22 August 2023 | Accepted: 4 December 2023 | Published: 26 March 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The SARS-CoV-2 virus gains entry into host cells by binding its spike glycoprotein (S-glycoprotein) to the angiotensin 2 receptor. This viral protein contains several conserved regions, such as the receptor binding domain region, making it an ideal target for treating COVID-19. Notably, the majority of existing vaccines elicit antigenic reaction by targeting this protein epitope. This study evaluated the binding affinities of 44 different drugs against the SARS-CoV-2 S-glycoprotein, considering their toxicity profiles and previous clinical studies at different testing stages. Our results revealed that maraviroc and estradiol benzoate exhibited high affinities (−7.7 and −7.6 kcal mol−1, respectively), while other ligands, such as indinavir and ritonavir, showed affinity at lower levels. Among the drugs with high affinity, toxicity levels ranged from harmful if swallowed (300 mg/kg < LD50 < 2000 mg/kg) to non-toxic (LD50 > 5000 mg/kg), with only three having undergone clinical testing, yielding promising or controversial results. Furthermore, emtricitabine and docosanol, previously explored as COVID-19 treatments, exhibited the lowest affinities (−4.7 and −3.9 kcal mol−1, respectively), with associated harmful effects if swallowed. These results provide essential information about drug interaction against the SARS-CoV-2 S-glycoprotein and potential treatment pathways for COVID-19.

Keywords
SARS-CoV-2
Coronavirus spike glycoprotein
Molecular docking simulation
Pharmacology
Cluster MCMC
Funding
None.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Escudero S, Guarner J, Galindo-Fraga A, Escudero- Salamanca M, Alcocer-Gamba M, Rio CD. The SARS-CoV-2 coronavirus pandemic (COVID-19): Current situation and implications for Mexico. Arch Cardiol Méx. 2020;90(Supl 1):7-14. doi: 10.24875/acm.m20000064

 

  1. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237-261. doi: 10.1146/annurev-virology-110615-042301

 

  1. Gui M, Song W, Zhou H, et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2016;27:119-129. doi: 10.1038/cr.2016.152

 

  1. Tolentino-Mendoza ME, Octavio-Aguilar P. Historia natural de los coronavirus y el desarrollo de vacunas. Herreriana. 2023;4(2):43-50. doi: 10.29057/h.v5i1.8592

 

  1. Accinelli RA, Zhang-Xu CM, Ju-Wang JD, et al. COVID-19: The pandemic due to the new SARS-CoV-2 virus. Rev Peru Med Exp Public Health. 2020;37(2):302-311. doi: 10.17843/rpmesp.2020.372.5411

 

  1. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5:562-569. doi: 10.1038/s41564-020-0688-y

 

  1. Kullappan M, Mary U, Ambrose JM, Veeraghavan VP, Surapaneni KM. Elucidating the role of N440K mutation in SARS-CoV-2 spike-ACE-2 binding affinity and COVID-19 severity by virtual screening, molecular docking and dynamics approach. J Biomol Struct Dyn. 2023;41(3):912-926. doi: 10.1080/07391102.2021.2014973

 

  1. Abeywardhana S, Premathilaka M, Bandaranayake U, Perera D. In silico study of SARS-CoV-2 spike protein RBD and human ACE-2 affinity dynamics across variants and Omicron subvariants. J Med Virol. 2023;95(1):e28406. doi: 10.1002/jmv.28406

 

  1. Jayk AB, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for oral treatment of covid-19 in nonhospitalized patients. N Engl J Med. 2022;386(6):509-520. doi: 10.1056/NEJMoa2116044

 

  1. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271. doi: 10.1038/s41422-020-0282-0

 

  1. Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 Days in patients with severe covid-19. N Engl J Med. 2020;383(19):1827-1837. doi: 10.1056/NEJMoa2015301

 

  1. López-Medina E, López P, Hurtado IC, et al. Effect of ivermectin on time to resolution of symptoms among adults with mild COVID-19: A Randomized clinical trial. JAMA. 2021;325(14):1426-1435. doi: 10.1001/jama.2021.3071

 

  1. Pirolli D, Righino B, Camponeschi C, Ria F, Di Sante G, De Rosa MC. Virtual screening and molecular dynamics simulations provide insight into repurposing drugs against SARS-CoV-2 variants Spike protein/ACE2 interface. Sci Rep. 2023;13:1494. doi: 10.1038/s41598-023-28716-8

 

  1. Takashita E, Yamayoshi S, Simon V, et al. Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. N Engl J Med. 2022;387(5):468-470. doi: 10.1056/NEJMc2207519

 

  1. Wrapp D, Wang N, Corbett KS, et al. Prefusion 2019-nCoV spike glycoprotein with a single receptor-binding domain up. Science. 2020;367(6483):1260-1263. doi: 10.1126/science.abb2507

 

  1. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-1612. doi: 10.1002/jcc.20084

 

  1. Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296-W303. doi: 10.1093/nar/gky427

 

  1. Banerjee P, Eckert OA, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;2:W257-W263. doi: 10.1093/nar/gky318

 

  1. Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023;51(6):D488-D508. doi: 10.1093/nar/gkac1077

 

  1. Dallakyan S, Olson AJ. Small-molecule library screening by docking with pyrx. Methods Mol Biol. 2015;1263:243-250. doi: 10.1007/978-1-4939-2269-7_19

 

  1. Hammer O, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Paleontol Electron. 2001;4(1):9.

 

  1. Zafari ZF, Sarmast SM. Estradiol and COVID-19: Does 17-estradiol have an immune-protective function in women against coronavirus? J Family Reprod Health. 2021;15(3):150-159. doi: 10.18502/jfrh.v15i3.7132

 

  1. Piplani S, Singh P, Petrovsky N, Winkler DA. Identifying SARS-CoV-2 drugs binding to the spike fatty acid binding pocket using in silico docking and molecular dynamics. Int J Mol Sci. 2023;24(4):4192. doi: 10.3390/ijms24044192

 

  1. Gupta Y, Savytskyi OV, Coban M, et al. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med. 2023;91:101151. doi: 10.1016/j.mam.2022.101151

 

  1. Yang C, Pan X, Huang Y, et al. Drug repurposing of itraconazole and estradiol benzoate against COVID-19 by blocking SARS-CoV-2 spike protein-mediated membrane fusion. Adv Ther (Weinh). 2021;4(5):2000224. doi: 10.1002/ADTP.202000224

 

  1. Tsegay KB, Adetemi CM, Gniffke EP, Sather DN, Walker JK, Smith SEP. A repurposed drug screen identifies compounds that inhibit the binding of the COVID-19 spike protein to ACE2. Front Pharmacol. 2021;12:685308. doi: 10.3389/fphar.2021.685308

 

  1. Liesenborghs L, Spriet I, Jockmans D, et al. Itraconazole for COVID-19: Preclinical studies and a proof-of-concept randomized clinical trial. EBioMedicine. 2021;66:103288. doi: 10.1016/j.ebiom.2021.103288

 

  1. Van Damme E, De Meyer S, Bojkova D, et al. In vitro activity of itraconazole against SARS-CoV-2. J Med Virol. 2021;93(7):4454-4460. doi: 10.1002/jmv.26917

 

  1. Guilck RM, Su Z, Flexner C, et al. Phase 2 study of the safety and efficacy of Vicriviroc, a CCR5 inhibitor, in HIV- 1-infected, treatment-experienced patients: AIDS clinical trials group 5211. J Infect Dis. 2007;196(2):304-312. doi: 10.1086/518797

 

  1. Cuesta-Llavona E, Gómez J, Albaiceta GM, et al. Variant-genetic and transcript-expression analysis showed a role for the chemokine-receptor CCR5 in COVID-19 severity. Int Immunopharmacol. 2021;98:107825. doi: 10.1016/J.INTIMP.2021.107825

 

  1. Risner KH, Tieu KV, Wang YG, et al. Maraviroc inhibits SARS-CoV-2 multiplication and s-protein mediated cell fusion in cell culture. BioRxiv [Preprint]. 2020. doi: 10.1101/2020.08.12.246389

 

  1. Okamoto M, Toyama M, Baba M. The chemokine receptor antagonist cenicriviroc inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;182:104902. doi: 10.1016/J.ANTIVIRAL.2020.104902

 

  1. García-Lledó A, Gómez-Pavón J, del Castillo JG, et al. Pharmacological treatment of COVID-19: An opinion paper. Rev Esp Quimioter. 2021;35(2):115-130. doi: 10.37201/req/158.2021

 

  1. Vellingiri B, Jayaramayya K, Iyer M, et al. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020;725:138277. doi: 10.1016/j.scitotenv.2020.138277

 

  1. Gidari A, Sabbatini S, Pallotto C, et al. Nelfinavir: An old ally in the COVID-19 fight? Microorganisms. 2022;10(12):2471. doi: 10.3390/microorganisms10122471

 

  1. Uraki R, Ito M, Kiso M, et al. Efficacy of antivirals and bivalent mRNA vaccines against SARS-CoV-2 isolate CH1.1. Lancet Infect Dis. 2023;23:522-526. doi: 10.1016/S1473-3099(23)00132-9

 

  1. Rezkikov LR, Norris MH, Vashisht R, et al. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem Biophys Res Commun. 2021;29:173-179. doi: 10.1016/j.bbrc.2020.11.095

 

  1. Basha SH. Coronavirus drugs-a brief overview of past, present and future. J PeerSci. 2020;2(2):e1000013.

 

  1. Meini S, Pagotto A, Longo B, Vendramin I, Pecori D, Tascini C. Role of Lopinavir/Ritonavir in the treatment of Covid-19: A review of current evidence, guideline recommendations, and perspectives. J Clin Med. 2020;9(7):2050. doi: 10.3390/jcm9072050

 

  1. Burastero GJ, Orlando G, Santoro A, et al. Ceftazidime/ Avibactam in ventilator-associated pneumonia due to difficult-to-treat non-fermenter gram-negative bacteria in Covid-19 patients: A case series and review of the literature. Antibiotics (Basel). 2022;11(8):1007. doi: 10.3390/antibiotics11081007

 

  1. Nourian A, Khalili H, Ahmadinejad Z, et al. Efficacy and safety of sofosbuvir/ledipasvir in treatment of patients with COVID-19; A randomized clinical trial. Acta Biomed. 2021;91(4):e2020102. doi: 10.23750/abm.v91i4.10877

 

  1. Czarnogorski M, Benn P, McCoig C, et al. Brief report: Impact of COVID-19 on Cabotegravir plus Rilpivirine long-acting dosing across 6 ongoing global phase IIb and III clinical trials. J Acquir Immune Defic Syndr. 2022;91(2):157-161. doi: 10.1097/QAI.0000000000003031

 

  1. Parienti JJ, Prazuck T, Peyro-Saint-Paul L, et al. Effect of tenofovir disoproxil fumarate and emtricitabine on nasopharyngeal SARS-CoV-2 viral load burden amongst outpatients with COVID-19: A pilot, randomized, open-label phase 2 trial. EClinicalMedicine. 2021;38:100993. doi: 10.1016/j.eclinm.2021.100993

 

  1. Montejano R, de la Calle-Prieto F, Velasco M, et al. Tenofovir disoproxil fumarate/emtricitabine and baricitinib for patients at high risk of severe coronavirus disease 2019: The PANCOVID randomized clinical trial. Clin Infect Dis. 2022;76(3):e116-e125. doi: 10.1093/cid/ciac628

 

  1. Rossignol JF, Bardin MC, Fulgencio J, Mogelnicki D, Bréchot C. A randomized double-blind placebo-controlled clinical trial of nitazoxanide for treatment of mild or moderate COVID-19. EClinicalMedicine. 2022;45:101310. doi: 10.1016/j.eclinm.2022.101310

 

  1. Zhai MZ, Lye CT, Kesselheim AS. Need for transparency and reliable evidence in emergency use authorizations for coronavirus disease 2019 (COVID-19) therapies. JAMA Intern Med. 2020;180(9):1145-1146. doi: 10.1001/jamainternmed.2020.2402

 

  1. Geetanjali S, Srivastava R, Singh R. Synthesis of four heterocyclic drug molecules repurposed for COVID-19. Mini Rev Org Chem. 2022;19(2):180-187. doi: 10.2174/1570193X18666210325121225

 

  1. Joshi S, Parkar J, Ansari A, et al. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis. 2021;102:501-508. doi: 10.1016/j.ijid.2020.10.069

 

  1. Rabie AM. Efficacious preclinical repurposing of the nucleoside analogue didanosine against COVID-19 polymerase and exonuclease. ACS Omega. 2022;7:21385-21396. doi: 10.1021/acsomega.1c07095

 

  1. Cento V, Perno CF. Dolutegravir plus lamivudine two-drug regimen: Safety, efficacy and diagnostic considerations for its use in real-life clinical practice-a refined approach in the COVID-19 era. Diagnostics (Basel). 2021;11(5):809. doi: 10.3390/diagnostics11050809

 

  1. Heidary F, Madani S, Gharebaghi R, Asadi-Amoli F. Acyclovir as a potential add-on therapy in COVID-19 treatment regimes. Pharm Sci. 2021;27(Suppl 1):S68-S77. doi: 10.34172/PS.2021.38

 

  1. Meng M, Zhang S, Dong X, et al. COVID-19 associated EBV reactivation and effects of ganciclovir treatment. Immun Inflamm Dis. 2022;10(4):e597. doi: 10.1002/iid3.597
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Print ISSN: 2705-0734, Published by AccScience Publishing