AccScience Publishing / ITPS / Volume 2 / Issue 2 / DOI: 10.36922/itps.v2i2.904
Cite this article
14
Download
689
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Long-term Administration of Lovastatin and Rivastigmine: An In Vivo Evaluation on Cognitive Functions and Brain Acetylcholinesterase Activity

Badruddeen 11 Juber Akhtar* Muhammad Arif1 Mohammad Irfan Khan1 Md. Mujahid1 Mohammad Ahmad1
Show Less
1 Faculty of Pharmacy, Integral University, Lucknow 226026, India
INNOSC Theranostics and Pharmacological Sciences 2019, 2(2), 904 https://doi.org/10.36922/itps.v2i2.904
Submitted: 1 May 2019 | Accepted: 21 February 2020 | Published: 26 February 2020
© 2020 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background. There is not much evidence illustrating that statins could be responsible for memory loss or dementia, although increased exposure to statins has been reported to cause cognitive side effects. The present study investigated the effect of lovastatin in combination with rivastigmine on cognitive function as well as brain acetylcholinesterase (AChE) activity in normal mice.
Methods. The mice were categorized into four groups, and they were treated with normal saline, lovastatin, rivastigmine, and the combination of lovastatin and rivastigmine, respectively, by oral administration for 60 days. The treatment effect on cognitive functions was assessed by behavioral tests, namely, the passive avoidance test and spontaneous alternation test, as well as the measurement of brain AChE activity by Ellman’s method.
Results. In this study, a significant reduction (P < 0.01) of brain AChE activity and positive effects (P < 0.01) on cognitive 
functions was observed in mice treated with the combination of lovastatin and rivastigmine as compared to rivastigmine alone. However, no significant differences (P < 0.05) were observed on brain AChE activity as well as cognitive functions in mice treated with lovastatin when compared with those treated with normal saline.
Conclusion. This study suggested that lovastatin did not contribute to any improvements in cognitive functions and brain AChE activity, but it potentiated the effect of rivastigmine.

Keywords
Lovastatin
Rivastigmine
Cognition
Behavioral
Brain acetylcholinesterase activity
References
[1]

Fisher, G.G.; Chacon, M.; Chaffee, D.S. Theories of Cognitive Aging and Work. In: Work Across the Lifespan. Amsterdam, Netherlands: Elsevier; 2019. p. 17–45.

[2]

Harada, C.N.; Natelson, L.M.C.; Triebel, K.L. Normal Cognitive Aging. Clin. Geriatr. Med., 2013, 29(4), 737–52.

[3]

Dobrucki, L.W.; Kalinowski, L.; Dobrucki, I.T.; Malinski, T. Statin-stimulated Nitric Oxide Release from Endothelium. Med. Sci. Monit., 2001, 7(4), 622–7.

[4]

Aviram, M.; Dankner, G.; Cogan, U.; Hochgraf, E.; Brook, J.G. Lovastatin Inhibits Low-Density Lipoprotein Oxidation and Alters its Fluidity and Uptake by Macrophages: In vitro and in vivostudies. Metabolism, 1992, 41(3), 229–35.

[5]

Kumar, S.; Srivastava, N.; Gomes, J. The Effect of Lovastatin on Oxidative Stress and Antioxidant Enzymes in Hydrogen Peroxide Intoxicated Rat. Food Chem. Toxicol., 2011, 49(4), 898–902.

[6]

Choi, H.W.; Shin, P.G.; Lee, J.H.; Choi, W.S.; Kang, M.J.; Kong, W.S.; Oh, M.J.; Seo, Y.B.; Kim, G.D. Anti-Inflammatory Effect of Lovastatin is Mediated via the Modulation of NF-κB and Inhibition of HDAC1 and the PI3K/Akt/mTOR Pathway in RAW264.7 Macrophages. Int. J. Mol. Med., 2018, 41(2), 1103–9.

[7]

Almuti, K.; Rimawi, R.; Spevack, D.; Ostfeld, R.J. Effects of Statins Beyond Lipid Lowering: Potential for Clinical Benefits. Int. J. Cardiol., 2006, 109, 7–15.

[8]

Tringali, G.; Vairano, M.; Dello, R.C.; Preziosi, P.; Navarra, P. Lovastatin and Mevastatin Reduce Basal and Cytokine-Stimulated Production of Prostaglandins from Rat Microglial Cells in vitro: Evidence for a Mechanism Unrelated to the Inhibition of Hydroxy-methyl-glutaryl CoA Reductase. Neurosci. Lett., 2004, 354(2), 107–10.

[9]

März, W.; Köenig, W. HMG-CoA Reductase Inhibition: Anti‑inflammatory Effects Beyond Lipid Lowering? Eur. J. Prev. Cardiol., 2003, 10(3), 169–79.

[10]

Kwak, B.; Mulhaupt, F.; Myit, S.; Mach, F. Statins as a Newly Recognized Type of Immunomodulator. Nat. Med., 2000, 6(12), 1399–402.

[11]

Strom, B.L.; Schinnar, R.; Karlawish, J.; Hennessy, S.; Teal, V.; Bilker, W.B. Statin Therapy and Risk of Acute Memory Impairment. JAMA Intern. Med., 2015, 175(8), 1399–405.

[12]

Wagstaff, L.R.; Mitton, M.W.; Arvik, B.M.L.; Doraiswamy, P.M. Statin-Associated Memory Loss: Analysis of 60 Case Reports and Review of the Literature. Pharmacotherapy, 2003, 23, 871–80.

[13]

Posvar, E.L.; Radulovic, L.L.; Cilla, D.D.; Whitfield, L.R.; Sedman, A.J. Tolerance and Pharmacokinetics of Single-Dose Atorvastatin, a Potent Inhibitor of HMG-CoA Reductase, in Healthy Subjects. J. Clin. Pharmacol., 1996, 36(8), 728–31.

[14]

Muldoon, M.F.; Barger, S.D.; Ryan, C.M.; Flory, J.D.; Lehoczky, J.P.; Matthews, K.A.; Manuck, S.B. Effects of Lovastatin on Cognitive Function and Psychological Well-Being. Am. J. Med., 2000, 108(7), 538–46.

[15]

Gibellato, M.G.; Moore, J.L.; Selby, K.; Bower, E.A. Effects of Lovastatin and Pravastatin on Cognitive Function in Military Aircrew. Aviat. Space Environ. Med., 2001, 72(9), 805–12.

[16]

Li, W.; Cui, Y.; Kushner, S.A.; Brown, R.A.M.; Jentsch, J.D.; Frankland, P.W.; Cannon, T.D.; Silva, A.J. The HMG-CoA Reductase Inhibitor Lovastatin Reverses the Learning and Attention Deficits in a Mouse Model of Neurofibromatosis Type 1. Curr. Biol., 2005, 15(21), 1961–7.

[17]

Jann, M.W. Rivastigmine, a New-Generation Cholinesterase Inhibitor for the Treatment of Alzheimer’s Disease. Pharmacotherapy, 2000, 20, 1–12.

[18]

Silver, J.M.; Koumaras, B.; Chen, M.; Mirski, D.; Potkin, S.G.; Reyes, P.; Warden, D.; Harvey, P.D.; Arciniegas, D.; Katz, D.I.; Gunay, I. Effects of Rivastigmine on Cognitive Function in Patients with Traumatic Brain Injury. Neurology, 2006, 67(5), 748–55.

[19]

Rösler, M.; Anand, R.; Cicin-Sain, A.; Gauthier, S.; Agid, Y.; Dal-Bianco, P.; Stähelin, H.B.; Hartman, R.; Gharabawi, M. Efficacy and Safety of Rivastigmine in Patients with Alzheimer's Disease: International Randomised Controlled Trial. Br. Med. J., 1999, 318(7184), 633–40.

[20]

Francis, P.T. The Interplay of Neurotransmitters in Alzheimer’s Disease. CNS Spectr., 2005, 10(S18), 6–9.

[21]

Wang, R.H.; Bejar, C.; Weinstock, M. Gender Differences in the Effect of Rivastigmine on Brain Cholinesterase Activity and Cognitive Function in Rats. Neuropharmacology, 2000, 39(3), 497–506.

[22]

Malikowska, N.; Sałat, K.; Podkowa, A. Comparison of pro‑Amnesic Efficacy of Scopolamine, Biperiden, and Phencyclidine by Using Passive Avoidance Task in CD-1 Mice. J. Pharmacol. Toxicol. Methods, 2017, 86, 76–80.

[23]

Parle, M.; Dhingra, D. Ascorbic Acid: A Promising Memory-enhancer in Mice. J. Pharmacol. Sci., 2003, 93(2), 129-35.

[24]

Dhingra, D.; Kumar, V. Memory-enhancing Activity of Palmatine in Mice Using Elevated Plus Maze and Morris Water Maze. Adv. Pharmacol. Sci.; 2012, 2012, 357368.

[25]

Badruddeen, Fareed, S.; Siddiqui, H.H.; Haque, S.E.; Khalid, M.; Akhtar, J. Psychoimmunomodulatory Effects of Onosma bracteatumWall. (Gaozaban) on Stress Model in Sprague Dawley Rats. J. Clin. Diagn. Res., 2012, 6(7), 1356–60.

[26]

Haddadi, H.; Rajaei, Z.; Alaei, H.; Shahidani, S. Chronic Treatment with Carvacrol Improves Passive Avoidance Memory in a Rat Model of Parkinson’s Disease. Arq. Neuropsiquiatr., 2018, 76(2), 71–7.

[27]

Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. In: Methods in Molecular Biology. Totowa, NJ: Humana Press Inc.; 2019. p. 105-11.

[28]

Badruddeen, Fareed, S.; Siddiqui, H.H.; Haque, S.E. Psychoimmunomodulatory Activity of Salvadora persica L. (Miswak) Extract on Stress Model in Rats. ” Asian J. Tradit. Med., 2012, 7, 109–17.

[29]

Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone,R.M. ANew and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol., 1961, 7(2), 88-95.

[30]

Thompson, S.; Lanctôt, K.L.; Hermann, N. The Benefits and Risks Associated with Cholinesterase Inhibitor Therapy in Alzheimer's Disease. Expert Opin. Drug Saf., 2004, 3, 425–40.

[31]

Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D Structure to Function. Chem. Biol. Interact., 2010, 187(1–3), 10–22.

[32]

Rees, T.M.; Brimijoin, W.S. The Role of Acetylcholinesterase in the Pathogenesis of Alzheimer’s Disease. Drugs Today, 2003, 39(1), 83.

[33]

Carageorgiou, H.; Sideris, A.C.; Messari, I.; Liakou, C.I.; Tsakiris, S. The Effects of Rivastigmine Plus Selegiline on Brain Acetylcholinesterase, (Na+, K+)-, Mg2+- ATPase Activities, Antioxidant Status, and Learning Performance of Aged Rats. Neuropsychiatr. Dis. Treat., 2008, 4(4), 687–99.

[34]

García-Ayllón, M.S.; Small, D.H.; Avila, J.; Sáez-Valero, J. Revisiting the Role of Acetylcholinesterase in Alzheimer’s Disease: Cross-talk with β-tau and p-Amyloid. Front. Mol. Neurosci., 2011, 4, 22.

[35]

O’Brien, R.D. Acetylcholinesterase and its Inhibition. In: Insecticide Biochemistry and Physiology. United States: Springer; 1976. p. 271–96.

[36]

Krause, B.R.; Newton, R.S. Lipid-lowering Activity of Atorvastatin and Lovastatin in Rodent Species: Triglyceride-lowering in Rats Correlates with Efficacy in LDL Animal Models. Atherosclerosis. 1995, 117(2), 237–44.

[37]

Cucchiara, B.; Kasner, S.E. Use of Statins in CNS Disorders. J. Neurol. Sci., 2001, 187(1–2), 81–9.

[38]

Yang, Z.; Wang, H.; Edwards, D.; Ding, C.; Yan, L.; Brayne, C.; Mant, J. Association of Blood Lipids, Atherosclerosis and Statin use with Dementia and Cognitive Impairment after Stroke: A Systematic Review and Meta-analysis. Ageing Res. Rev., 2020, 57, 100962.

[39]

Zhao, X.S.; Wu, Q.; Peng, J.; Pan, L.H.; Ren, Z.; Liu, H.T.; Jiang, Z.S.; Wang, G.X.; Tang, Z.H.; Liu, L.S. Hyperlipidemia-induced Apoptosis of Hippocampal Neurons in apoE(-/-) Mice may be Associated with Increased PCSK9 Expression. Mol. Med. Rep., 2017, 15(2), 712–8.

[40]

Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.

[41]

Gouras, G.K.; Tampellini, D.; Takahashi, R.H.; CapetilloZarate, E. Intraneuronal β-amyloid Accumulation and Synapse Pathology in Alzheimer’s Disease. Acta Neuropathol., 2010, 119, 523–41.

[42]

Buxbaum, J.D.; Cullen, E.I.; Friedhoff, L.T. Pharmacological Concentrations of the HMG-CoA Reductase Inhibitor Lovastatin Decrease the Formation of the Alzheimer Beta-amyloid Peptide in vitro and in Patients. Front. Biosci., 2002, 7, a50-9.

[43]

Jeon, S.M.; Bok, S.H.; Jang, M.K.; Lee, M.K.; Nam, K.T.; Park, Y.B.; Rhee, S.J.; Choi, M.S. Antioxidative Activity of Naringin and Lovastatin in High Cholesterol-fed Rabbits. Life Sci., 2001, 69(24), 2855–66.

[44]

Zhou, Q.; Kummerow, F.A. Antioxidative Effects of Lovastatin in Cultured Human Endothelial Cells. J. Nutr. Biochem., 2002, 13(4), 200–8.

Conflict of interest
The authors have no conflicts of interest.
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Published by AccScience Publishing