AccScience Publishing / IJPS / Online First / DOI: 10.36922/ijps.4879
RESEARCH ARTICLE

A machine learning approach in predicting poverty in the poorest region of Luzon, Philippines

Emmanuel A. Onsay1,2 * Kevin C. Baltar2
Show Less
1 Graduate School, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
2 Partido Institute of Economics, College of Business and Management, Partido State University, Goa, Camarines Sur, Philippines
Received: 18 September 2024 | Revised: 10 May 2025 | Accepted: 14 May 2025 | Published online: 30 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Poverty is a complex and multidimensional issue that is difficult to measure accurately. While multiple studies have employed traditional econometric methods to analyze poverty, they often overlook the critical roles of electricity, Internet, and cell phone access – factors our study incorporates alongside machine learning to provide deeper and more accurate insights. This study examines the associations between Internet, cell phone, and electricity access and poverty in the poorest region of Luzon, Philippines, aiming to foster connectivity among households to support poverty alleviation. Using probit regression and estimation analyses, we found significant socioeconomic disparities, with many households living below the poverty line. While most households have electricity and cell phones, many lack Internet access. This indicates challenges in infrastructure and digital connectivity that affect living standards and economic opportunities. The analysis reveals important causal relationships between Internet access, cell phone ownership, electricity availability, household size, and the likelihood of being in poverty. Interestingly, the lack of these essential services is linked to higher poverty rates. These results highlight the need for targeted interventions to tackle the root causes of poverty, particularly in bridging the digital divide and improving access to essential services. Machine learning algorithms were employed to effectively predict poverty outcomes based on the results of econometric modeling, where variables with significant coefficients served as a priori inputs. The findings indicate that Extreme Gradient Boosting achieved the lowest mean square error and the highest R2 value among all regression models. Meanwhile, the random forest classifier demonstrated the best overall performance with the highest classification accuracy. The outlined policies support energy affordability, cell phone access, and Internet connectivity through financial aid, solar programs, device provisions, and broadband expansion. Addressing infrastructure gaps and technology access is key to sustainable economic growth, guiding policy makers toward equitable, resilient solutions.

Keywords
Poverty
Internet access
Cell phone
Electricity
Probit
Community-based monitoring system
Philippines
Funding
This work is funded by the Partido State University (Poverty Alleviation and Economic Development Grant 2022 – 2025; Grant No.: NTP-10-09-2024-CBM-28).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References

Afzal, A., Firdousi, S.F., Waqar, A., & Awais, M. (2022). The influence of internet penetration on poverty and income inequality. Sage Open, 12(3):21582440221116104. https://doi.org/10.1177/21582440221116104

 

Afzal, A., Khan, S., Daud, S., Ahmad, Z., & Butt, A. (2023). Addressing the digital divide: Access and use of technology in education. Journal of Social Sciences Review, 3(2):883-895. https://doi.org/10.54183/jssr.v3i2.326

 

Aiken, E., Bellue, S., Karlan, D., Udry, C., & Blumenstock, J.E. (2022). Machine learning and phone data can improve targeting of humanitarian aid. Nature, 603:864-870. https://doi.org/10.1038/s41586-022-04484-9

 

Aiken, E., Bellue, S., Karlan, D., Udry, C.R., & Blumenstock, J. (2021). Machine Learning and Mobile Phone Data Can Improve the Targeting of Humanitarian Assistance (No. w29070). United States: National Bureau of Economic Research. https://doi.org/10.3386/w29070

 

Aiken, E.L., Bedoya, G., Blumenstock, J.E., & Coville, A. (2023). Program targeting with machine learning and mobile phone data: Evidence from an anti-poverty intervention in Afghanistan. Journal of Development Economics, 161:103016. https://doi.org/10.1016/j.jdeveco.2022.103016

 

Aji, P., Wijaya, D.R., Hernawati, E., Yualinda, S., Yualinda, S., Frasanta, M.A.H., et al. (2023). Poverty level prediction based on E-commerce data using naïve bayes algorithm and similarity-based feature selection. IJAIT (International Journal of Applied Information Technology), 7:114-126. https://doi.org/10.25124/ijait.v7i02.5374

 

Albert, J.R.G., & Collado, P.M. (2004). Profile and determinants of poverty in the Philippines. In: 9th National Convention on Statistics (NCS), EDSA Shangri-La Hotel, p.4-5.

 

Alsharkawi, A., Al-Fetyani, M., Dawas, M., Saadeh, H., & Alyaman, M. (2021). Poverty classification using machine learning: The case of Jordan. Sustainability, 13(3):1412. https://doi.org/10.3390/su13031412

 

Alsharkawi, A., Al-Fetyani, M., Dawas, M., Saadeh, H., & Alyaman, M. (2022). Improved poverty tracking and targeting in Jordan using feature selection and machine learning. IEEE Access, 10:86483-86497. https://doi.org/10.1109/ACCESS.2022.3198951

 

Asongu, S., & Agyemang-Mintah, P. (2025). The relationship between inequality and poverty in developing countries: Mitigating role of virtual social network and internet access in schools. International Journal of Social Economics, 52(2):191-204. https://doi.org/10.1108/IJSE-09-2023-0695

 

Balisacan, A.M. (2010). Poverty in the Philippines: An update and reexamination. Philippine Review of Economics, 38(1):15-52.

 

Barocas, S., Hardt, M., & Narayanan, A. (2023). Fairness and Machine Learning: Limitations and Opportunities. United States: MIT Press.

 

Barrantes, R. (2010). Digital Poverty: An Analytical Framework. In: 17th Biennial Conference of the International Telecommunications Society.

 

Baticulon, R.E., Sy, J.J., Alberto, N.R.I., Baron, M.B.C., Mabulay, R.E.C., Rizada, L.G.T., et al. (2021). Barriers to online learning in the time of COVID-19: A national survey of medical students in the Philippines. Medical Science Educator, 31:615-626. https://doi.org/10.1007/s40670-021-01231-z

 

Baurzhan, S., & Jenkins, G.P. (2016). Off-grid solar PV: Is it an affordable or appropriate solution for rural electrification in Sub-Saharan African countries?. Renewable and Sustainable Energy Reviews, 60:1405-1418. https://doi.org/10.1016/j.rser.2016.03.016

 

Belghith, N., Fernandez, F., & David, C. (2022). Overcoming Poverty and Inequality in the Philippines: Past, Present, and Prospects for the Future (English). United States of America: World Bank Group. Available from: https://coilink.org/20.500.12592/0dg3tt [Last accessed on 2025 May 01].

 

Benson, E., Best, S., Del Pozo-Vergnes, E., Garside, B., Mohammed, E., Panhuysen, S., et al. (2014). Informal and Green? The Forgotten Voice in the Transition to a Green Economy. Available from: https://www.iied.org/16566iied

 

Briceño, I.I., Serrano, J., & de Santana, S.K.S. (2024). Characterizing the Afro-Brazilian Digital Inclusion Gap and Assessing Investment Opportunities. Washington, DC: Inter-American Development Bank. https://doi.org/10.18235/0013052

 

Browne, C., Matteson, D.S., McBride, L., Hu, L., Liu, Y., Sun, Y., et al. (2021). Multivariate random forest prediction of poverty and malnutrition prevalence. PLoS One, 16:e0255519. https://doi.org/10.1371/journal.pone.0255519

 

Buck, R., & Deutsch, J. (2014). Effects of poverty on education. Journal of Human Sciences, 11(2):1139-1148.

 

Burkov, A. (2019). The Hundred-page Machine Learning Book. Vol. 1. Quebec City, Canada: Andriy Burkov, p.32.

 

Butcher, J., & Curry, G. (2022). Digital poverty as a barrier to access. Widening Participation and Lifelong Learning, 24(2):180-194. https://doi.org/10.5456/WPLL.24.2.180

 

Chen, T., & Guestrin, C. (2016). Xgboost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and data Mining, p.785-794. https://doi.org/10.1145/2939672.2939785

 

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al. (2015). Xgboost: Extreme Gradient Boosting. R Package Version 0.4-2. Vol. 1. p.1-4.

 

Choubey, D.K., Kumar, P., Tripathi, S., & Kumar, S. (2020). Performance evaluation of classification methods with PCA and PSO for diabetes. Network Modeling Analysis in Health Informatics and Bioinformatics, 9:5. https://doi.org/10.1007/s13721-019-0210-8

 

Connell, J.P., & Kubisch, A.C. (1998). Applying a theory of change approach to the evaluation of comprehensive community initiatives: Progress, prospects, and problems. New Approaches to Evaluating Community Initiatives, 2(15- 44):1-16.

 

Cuaresma, J.C., Fengler, M., Fenz, K., Kharas, H., & Saenger, L. (2021). Measuring Internet Poverty. United States of America: Brookings Institution. Available from: https://coilink.org/20.500.12592/9n1rtw [Last accessed on 2025 May 01].

 

Cuaresma, J.C., Fengler, M., Fenz, K., Kharas, H., & Saenger, L. (2022). Internet Poverty: The Next Frontier in Development. United States of America: Brookings Institution. Available from: https://coilink.org/20.500.12592/dwrnfb [Last accessed on 2025 May 01].

 

Cuaresma, J.C., Fenz, K., Fisher, M.N., & Kharas, H. (2022). Internet Poverty: The Next Frontier in Development. United States of America: Brookings Institution. Available from: https://coilink.org/20.500.12592/dwrnfb [Last accessed on 2025 May 01].

 

Diallo, A., & Moussa, R.K. (2020). Does access to electricity affect poverty? Evidence from Côte d’Ivoire. Economics Bulletin, 40(3):2521-2537.

 

Diop, N., Warwick, M.K., Zaman, H., Fock, A., Niang, C.T., Coulibaly, S., et al. (2020). Philippines Digital Economy Report 2020: A Better Normal Under COVID-19-Digitalizing the Philippine Economy Now. World Bank. Available from: https://documents.worldbank.org/en/publication/documentsreports/documentdetail/796871601650398190/philippines-digital-economy-report-2020-a-better-normal-under-covid-19-digitalizing-the-philippine-economy-now [Last accessed on 2024 Aug 25].

 

Eckart, L., Eckart, S., & Enke, M. (2021). A brief comparative study of the potentialities and limitations of machine-learning algorithms and statistical techniques. E3S Web of Conferences, 266:02001. https://doi.org/10.1051/e3sconf/202126602001

 

Edelman, P. (2006). The War on poverty and subsequent federal programs: What worked, what didn’t work, and why-lessons for future programs. Clearinghouse Review, 40:7.

 

Eyasu, A.M. (2020). Determinants of poverty in rural households: Evidence from North-Western Ethiopia. Cogent Food and Agriculture, 6(1):1823652. https://doi.org/10.1080/23311932.2020.1823652

 

Faiella, I., & Lavecchia, L. (2021). Energy poverty. How can you fight it, if you can’t measure it?. Energy and Buildings, 233:110692. https://doi.org/10.1016/j.enbuild.2020.110692

 

Foxley, A. (2004). Successes and failures in poverty eradication: Chile. In: Scaling up Poverty Reduction: A Global Learning Process and Conference, Shanghai, p.25-27. Available from: https://documents1.worldbank.org/curated/en/292491468743165841/pdf/308060cl0 poverty01see0also0307591.pdf [Last accessed on 2024 Aug 25].

 

Garcia-Mora, F., & Mora-Rivera, J. (2023). Exploring the impacts of Internet access on poverty: A regional analysis of rural Mexico. New Media and Society, 25(1):26-49. https://doi.org/10.1177/14614448211000650

 

Geurts, P., & Louppe, G. (2011). Learning to rank with extremely randomized trees. In: Proceedings of the Learning to Rank Challenge, p.49-61. Available from: https://proceedings.mlr. press/v14/geurts11a.html [Last accessed on 2024 Aug 25].

 

Giray, L., Gumalin, D., Jacob, J., & Villacorta, K. (2022). Exploring the online learning experience of Filipino college students during COVID-19 pandemic. Jurnal Ilmiah Peuradeun, 10(1):227-250. https://doi.org/10.26811/peuradeun.v10i1.691

 

Gonzalez-Briones, A., Hernandez, G., Corchado, J.M., Omatu, S., & Mohamad, M.S. (2019). Machine learning models for electricity consumption forecasting: A review. In: 2019 2nd International Conference on Computer Applications and Information Security (ICCAIS). United States: IEEE, p.1-6. https://doi.org/10.1109/cais.2019.8769508

 

González-Eguino, M. (2015). Energy poverty: An overview. Renewable and Sustainable Energy Reviews, 47:377-385. https://doi.org/10.1016/j.rser.2015.03.013

 

Gu, D., Feng, Q., Sautter, J.M., Qiu, L. (2017). Exposure to urban life and mortality risk among older adults in China. International Journal of Population Studies, 3(1):1-21. https://doi.org/10.18063/IJPS.2017.01.007

 

Hagle, T.M., & Mitchell, G.E. (1992). Goodness-of-fit measures for probit and logit. American Journal of Political Science, 36:762-784. https://doi.org/10.2307/2111590

 

Hall, O., Dompae, F., Wahab, I., & Dzanku, F.M. (2023). A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications. Journal of International Development, 35(7):1753-1768. https://doi.org/10.1002/jid.3751

 

Hastie, T., Tibshirani, R., Friedman, J.H., & Friedman, J.H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Vol. 2. New York: Springer, p.1-758.

 

Haveman, R.H. (Ed.). (2013). A Decade of Federal Antipoverty Programs: Achievements, Failures, and Lessons. Netherlands: Elsevier.

 

Heiberger, R.M., Neuwirth, E., Heiberger, R.M., & Neuwirth, E. (2009). Polynomial regression. In: R through excel: A Spreadsheet Interface for Statistics, Data Analysis, and Graphics. Germany: Springer, p.269-284.

 

Hjort, J., & Tian, L. (2021). The economic impact of internet connectivity in developing countries. Annual Review of Economics, 17. https://doi.org/10.1146/annurev-economics-081224-102352

 

Hossain, M., Ut, T.T., & Bose, M.L. (2006). Livelihood systems and dynamics of poverty in a coastal province of Vietnam. In: Environment and Livelihoods in Tropical Coastal Zones: Managing Agriculture-fishery-aquaculture Conflicts. Wallingford UK: CABI. p.30-47. https://doi.org/10.1079/9781845931070.0030

 

Hu, S., Ge, Y., Liu, M., Ren, Z., & Zhang, X. (2022). Village-level poverty identification using machine learning, high-resolution images, and geospatial data. International Journal of Applied Earth Observation and Geoinformation, 107:102694. https://doi.org/10.1016/j.jag.2022.102694

 

Ignacio, A.R., Puncia, M.P., Inocencio, A.B., Tiongco, M.M., Conchada, M.P., Sobrevinas, A.B., et al. (2021). Examining and Evaluating the Multidimensional Energy Poverty Index (MEPI) in the Philippine Household Context. Available from: https://animorepository.dlsu.edu.ph/res_aki/8 [Last accessed on 2024 Aug 25].

 

Ikejemba, E.C., Mpuan, P.B., Schuur, P.C., & Van Hillegersberg, J. (2017). The empirical reality and sustainable management failures of renewable energy projects in Sub-Saharan Africa (part 1 of 2). Renewable Energy, 102:234-240. https://doi.org/10.1016/j.renene.2016.10.037

 

Inam, U.S. (2015). Poverty alleviation strategies in Nigeria: A call for an inclusive growth approach. Journal of Poverty, Investment and Development, 15:110-118.

 

Jaeger, P.T., Shneiderman, B., Fleischmann, K.R., Preece, J., Qu, Y., & Wu, P.F. (2007). Community response grids: E-government, social networks, and effective emergency management. Telecommunications Policy, 31(10-11):592-604. https://doi.org/10.1016/j.telpol.2007.07.008

 

Jain, R. (2014). The Indian broadband plan: A review and implications for theory. Telecommunications Policy, 38(3), 278-290. https://doi.org/10.1016/j.telpol.2013.10.005

 

Jenkins, K., McCauley, D., Heffron, R., Stephan, H., & Rehner, R. (2016). Energy justice: A conceptual review. Energy Research and Social Science, 11:174-182. https://doi.org/10.1016/j.erss.2015.10.004

 

Kass-Hanna, J., Lyons, A.C., & Liu, F. (2022). Building financial resilience through financial and digital literacy in South Asia and Sub-Saharan Africa. Emerging Markets Review, 51:100846. https://doi.org/10.1016/j.ememar.2021.100846

 

Kefela, G.T. (2011). The impact of mobile phone and economic growth in developing countries. African Journal of Business Management, 5(2):269. https://doi.org/10.5897/ajbm09.367

 

Khan, M.H. (2000). Rural poverty in developing countries. Finance and Development, 37:4. https://doi.org/10.5089/9781451951936.022

 

Khan, M.M.H. (2001). Rural Poverty in Developing Countries: Implications for Public Policy. United States: International Monetary Fund. Available from: https://www.imf.org/en/ publications/economic-issues/issues/2016/12/30/rural-poverty-in-developing-countries-implications-for-public-policy-14783 [Last accessed on 2024 Aug 25].

 

Kibria, B.G., & Saleh, A.M.E. (2012). Improving the estimators of the parameters of a probit regression model: A ridge regression approach. Journal of Statistical Planning and Inference, 142(6):1421-1435. https://doi.org/10.1016/j.jspi.2011.12.023

 

Labonne, J., & Chase, R.S. (2009). The Power of Information: The Impact of Mobile Phones on Farmers’ Welfare in the Philippines. World Bank Policy Research Working Paper No. 4996. Available from: https://ssrn. com/ abstract=1435202

 

Lee, J., & Byrne, J. (2019). Expanding the conceptual and analytical basis of energy justice: Beyond the three-tenet framework. Frontiers in Energy Research, 7:99. https://doi.org/10.3389/fenrg.2019.00099

 

Lee, M.H.L., Ser, Y.C., Selvachandran, G., Thong, P.H., Cuong, L., Son, L.H., et al. (2022). A comparative study of forecasting electricity consumption using machine learning models. Mathematics, 10(8):1329. https://doi.org/10.3390/math10081329

 

Leidig, M., & Teeuw, R.M. (2015). Quantifying and mapping global data poverty. PloS one, 10(11):e0142076. https://doi.org/10.1371/journal.pone.0145591

 

Li, Q., Yu, S., Échevin, D., & Fan, M. (2022). Is poverty predictable with machine learning? A study of DHS data from Kyrgyzstan. Socio-Economic Planning Sciences, 81:101195. https://doi.org/10.1016/j.seps.2021.101195

 

Liu, Y., Wang, Y., Zhang, J. (2012). New machine learning algorithm: Random forest. In: Liu, B., Ma, M., Chang, J. (eds)., Information Computing and Applications. ICICA 2012. Lecture Notes in Computer Science. Vol 7473. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-34062-8_32

 

Llorito, D. (2020). Harnessing Digital Technologies Can Help Philippines Overcome Impact Of Pandemic, Hasten Recovery. United States: World Bank. Available from: https://www. worldbank.org/en/news/press-release/2020/10/05/harnessing-digital-technologies-can-help-philippines-overcome-impact-of-pandemic-hasten-recovery [Last accessed on 2024 Aug 25].

 

Min, P.P., Gan, Y.W., Hamzah, S.N.B., Ong, T.S., & Sayeed, M.S. (2022). Poverty prediction using machine learning approach. Journal of Southwest Jiaotong University, 57(1):136-146. https://doi.org/10.35741/issn.0258-2724.57.1.12

 

Mujumdar, A., & Vaidehi, V. (2019). Diabetes prediction using machine learning algorithms. Procedia Computer Science, 165:292-299. https://doi.org/10.1016/j.procs.2020.01.047

 

Muñetón-Santa, G., & Manrique-Ruiz, L.C. (2023). Predicting multidimensional poverty with machine learning algorithms: An open data source approach using spatial data. Social Sciences, 12(5):296. https://doi.org/10.3390/socsci12050296

 

Nahapiet, J., & Ghoshal, S. (1998). Social capital, intellectual capital, and the organizational advantage. Academy of Management Review, 23(2):242-266. https://doi.org/10.2307/259373

 

O’Sullivan, K.C., Howden-Chapman, P.L., & Fougere, G. (2011). Making the connection: The relationship between fuel poverty, electricity disconnection, and prepayment metering. Energy Policy, 39(2):733-741. https://doi.org/10.1016/J.ENPOL.2010.10.046

 

Okwi, P.O., Ndeng’e, G., Kristjanson, P., Arunga, M., Notenbaert, A., Omolo, A., et al. (2007). Spatial determinants of poverty in rural Kenya. Proceedings of the National Academy of Sciences, 104(43):16769-16774. https://doi.org/10.1073/pnas.0611107104

 

Onsay, E.A. (2022). Poverty profile and health dynamics of indigenous people. International Journal of Social Science Research and Review, 2:1-27.

 

Onsay, E.A., & Rabajante, J.F. (2024a). Combining machine learning (ML) and participatory rural appraisal (PRA) for disaster risk preparedness (DRP): Evidence from the poorest region of Luzon, Philippines. International Journal of Disaster Risk Reduction, 2024:104809. https://doi.org/10.1016/j.ijdrr.2024.104809

 

Onsay, E.A., & Rabajante, J.F. (2024b). Measuring the unmeasurable multidimensional poverty for economic development: Datasets, algorithms, and models from the poorest region of Luzon, Philippines. Data in Brief, 53:110150. https://doi.org/10.1016/j.dib.2024.110150

 

Onsay, E.A., & Rabajante, J.F. (2024c). When machine learning meets econometrics: Can it build a better measure to predict multidimensional poverty and examine unmeasurable economic conditions?. Science Talks, 11:100387. https://doi.org/10.1016/j.sctalk.2024.100387

 

Onsay, E.A., & Rabajante, J.F. (2024d). Measuring the unmeasurable: Decomposing multidimensional rural poverty and promoting economic development in the poorest region of Luzon, Philippines. Societies, 14(11):235. https://doi.org/10.3390/soc14110235

 

Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering, 48:500-506. https://doi.org/10.1016/j.proeng.2012.09.545

 

Paira, K., & Ao, M. (2023). Understanding relationships between socioeconomic, household crop diversification, and child malnutrition in rural Jhargram, West Bengal, India. International Journal of Population Studies, 10(2):115-128. https://doi.org/10.36922/ijps.0324

 

Parikh, A., & Sen, K. (2006). Probit with heteroscedasticity: An application to Indian poverty analysis. Applied Economics Letters, 13(11):699-707. https://doi.org/10.1080/13504850500402096

 

Philippine Statistics Authority. (2021). Semester Full Year 2021 Official Poverty Statistics of the Philippines. Available from: https://rsso05.psa.gov.ph/statistics/poverty/ node/1684057548 [Last accessed on 2024 Aug 25].

 

Philippine Statistics Authority. (2023). Full Year 2023 Official Poverty Statistics of the Philippines. Available from: https:// rsso05.psa.gov.ph/statistics/poverty [Last accessed on 2024 Aug 25].

 

RA11315. (2018). Republic Act (11315) Community-Based Monitoring Act of 2018. Available from: https://www. officialgazette.gov.ph/downloads/2019/04apr/20190417-ra- 11315-rrd.pdf [Last accessed on 2024 Aug 25].

 

Rani, U., & Schmid, J.P. (2007). Household Characteristics, Employment and Poverty in India. Paper Presented at the 2nd IZA/World Bank Conference on Employment and Development, Bonn, Germany.

 

Rarasati, A.D., Ardian, M.D., Setiawan, E.A., & Mohammad, I.H. (2019). Community behavior analysis of electricity consumption in rural areas (a case study of Batang Regency). IOP Conference Series: Materials Science and Engineering, 550(1):012002. https://doi./org/10.1088/1757-899X/550/1/012002

 

Raschka, S., & Mirjalili, V. (2019). Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-learn, and TensorFlow 2. United Kingdom: Packt Publishing Ltd.

 

Ravago, M.L.V., Mapa, D.S., Albis, M., & Mundo, M. (2018). The Link Between Energy and Poverty: Evidence of Benefits for the Poor. Available from: https://archium.ateneo.edu/ economics-faculty-pubs/40/ [Last accessed on 2024 Aug 25].

 

Reyes, C.M., Mandap, A.B., Ilarde, K., Garnace, L., Asirot, J., & Bancolita, J. (2007). Community-Based Monitoring System in the Philippines. Scaling up Poverty Reduction Initiatives and Improving Local Governance through CBMS, p.15. Available from: https://www.semanticscholar.org/paper/community-based-monitoring-system-in-the-reyes-mandap/ddb51a08a04e1cabde32584c093262d b95 b0ac1b [Last accessed on 2024 Aug 25].

 

Schonlau, M., & Zou, R.Y. (2020). The random forest algorithm for statistical learning. The Stata Journal, 20(1):3-29. https://doi.org/10.1177/1536867X20909688

 

Sen, A. (2008). The idea of justice. Journal of Human Development, 9(3):331-342. https://doi.org/10.1080/14649880802236540

 

Sobreviñas, A.B. (2020). Examining chronic and transient poverty using the community-based monitoring system (CBMS) data: The case of the municipality of orion. DLSU Business and Economics Review, 30(1):111-129.

 

Solís-Salazar, M., & Madrigal-Sanabria, J. (2022). A machine learning proposal to predict poverty. Revista Tecnología en Marcha, 35(4):84-94. https://doi.org/10.18845/tm.v35i4.5766

 

Sullivan, N. (2008). Cell Phones Provide Significant Economic Gains for Low-income American Households. Washington, DC: New Millennium Research Council.

 

Sundsøy, P., Bjelland, J., Reme, B.A., Iqbal, A.M., & Jahani, E. (2016). Deep learning applied to mobile phone data for individual income classification. In: 2016 International Conference on Artificial Intelligence: Technologies and Applications.Netherlands: Atlantis Press. p.96-99. https://doi.org/10.2991/icaita-16.2016.24

 

Van Dijk, J.A. (2006). Digital divide research, achievements and shortcomings. Poetics, 34(4-5):221-235. https://doi.org/10.1016/j.poetic.2006.05.004

 

Varpio, L., Paradis, E., Uijtdehaage, S., & Young, M. (2020). The distinctions between theory, theoretical framework, and conceptual framework. Academic Medicine, 95(7):989-994. https://doi.org/10.1097/acm.0000000000003075

 

Velasco, J.M., & Chang, C.L. (2024). Renewable Energy Transition: Public Perception and Willingness to Pay in Cagayan Valley Region, Philippines. SSRN Journal [Preprint]. https://doi.org/10.2139/ssrn.4947604

 

Wagle, U. (2002). Rethinking poverty: Definition and measurement. International Social Science Journal, 54:171. https://doi.org/10.1111/1468-2451.00366

 

Wang, H., Maruejols, L., & Yu, X. (2021). Predicting energy poverty with combinations of remote-sensing and socioeconomic survey data in India: Evidence from machine learning. Energy Economics, 102:105510. https://doi.org/10.1016/j.eneco.2021.105510

 

Wijaya, D.R., Paramita, N.L.P.S.P., Uluwiyah, A., Rheza, M., Zahara, A., & Puspita, D.R. (2022). Estimating city-level poverty rate based on e-commerce data with machine learning. Electronic Commerce Research, 22(1):195-221. https://doi.org/10.1007/s10660-020-09424-1

 

Wise, S. (2014). Internet connectivity among people experiencing poverty and deprivation. Journal of Telecommunications and the Digital Economy, 2(3):49. http://doi.org/10.18080/ajtde.v2n3.49

 

World Bank. (2022). Poverty and Shared Prosperity 2022: Correcting Course (English). United States: World Bank Group. Available from: http://documents.worldbank.org/ curated/en/099750110062235316 [Last accessed on 2024 Aug 25].

 

Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98:166-173. https://doi.org/10.1016/j.chb.2019.04.015

 

Yang, Y., & Wen, M. (2016). Correlates of parental satisfaction: a study of late life family relationships in a rural county in China. International Journal of Population Studies, 2(1): 53-64. https://doi.org/10.18063/IJPS.2016.01.007

 

Zhang, Y., Li, K., & Huang, J. (2024). Do female-headed households have poorer financial health compared to male-headed households? Evidence from China. International Journal of Population Studies, 11:95-108. https://doi.org/10.36922/ijps.4403

 

Zixi, H. (2021). Poverty prediction through machine learning. In: 2021 2nd International Conference on E-Commerce and Internet Technology (ECIT). United States: IEEE. p.314-324. https://doi.org/10.1109/ecit52743.2021.00073

 

Share
Back to top
International Journal of Population Studies, Electronic ISSN: 2424-8606 Print ISSN: 2424-8150, Published by AccScience Publishing